Skip to main content

3D U-net with Multi-level Deep Supervision: Fully Automatic Segmentation of Proximal Femur in 3D MR Images

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10541))

Included in the following conference series:

Abstract

This paper addresses the problem of segmentation of proximal femur in 3D MR images. We propose a deeply supervised 3D U-net-like fully convolutional network for segmentation of proximal femur in 3D MR images. After training, our network can directly map a whole volumetric data to its volume-wise labels. Inspired by previous work, multi-level deep supervision is designed to alleviate the potential gradient vanishing problem during training. It is also used together with partial transfer learning to boost the training efficiency when only small set of labeled training data are available. The present method was validated on 20 3D MR images of femoroacetabular impingement patients. The experimental results demonstrate the efficacy of the present method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/zengguodong/FemurSegmentation3DFCN.

  2. 2.

    http://www.amira.com/.

References

  1. Laborie, L., Lehmann, T., Engesæter, I., et al.: Prevalence of radiographic findings thought to be associated with femoroacetabular impingement in a population-based cohort of 2081 healthy young adults. Radiology 260, 494–502 (2011)

    Article  Google Scholar 

  2. Leunig, M., Beaulé, P., Ganz, R.: The concept of femoroacetabular impingement: current status and future perspectives. Clin. Orthop. Relat. Res. 467, 616–622 (2009)

    Article  Google Scholar 

  3. Clohisy, J., Knaus, E., Hunt, D.M., et al.: Clinical presentation of patients with symptomatic anterior hip impingement. Clin. Orthop. Relat. Res. 467, 638–644 (2009)

    Article  Google Scholar 

  4. Perdikakis, E., Karachalios, T., Katonis, P., Karantanas, A.: Comparison of MR-arthrography and MDCT-arthrography for detection of labral and articular cartilage hip pathology. Skeletal Radiol. 40, 1441–1447 (2011)

    Article  Google Scholar 

  5. Xia, Y., Fripp, J., Chandra, S., Schwarz, R., Engstrom, C., Crozier, S.: Automated bone segmentation from large field of view 3D MR images of the hip joint. Phys. Med. Biol. 21, 7375–7390 (2013)

    Article  Google Scholar 

  6. Xia, Y., Chandra, S., Engstrom, C., Strudwick, M., Crozier, S., Fripp, J.: Automatic hip cartilage segmentation from 3D MR images using arc-weighted graph searching. Phys. Med. Biol. 59, 7245–66 (2014)

    Article  Google Scholar 

  7. Gilles, B., Magnenat-Thalmann, N.: Musculoskeletal MRI segmentation using multi-resolution simplex meshes with medial representations. Med. Image Anal. 14, 291–302 (2010)

    Article  Google Scholar 

  8. Arezoomand, S., Lee, W.S., Rakhra, K., Beaule, P.: A 3D active model framework for segmentation of proximal femur in MR images. Int. J. CARS 10, 55–66 (2015)

    Article  Google Scholar 

  9. Chandra, S., Xia, Y., Engstrom, C., et al.: Focused shape models for hip joint segmentation in 3D magnetic resonance images. Med. Image Anal. 18, 567–578 (2014)

    Article  Google Scholar 

  10. Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates, Inc. (2012)

    Google Scholar 

  11. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440 (2015)

    Google Scholar 

  12. Prasoon, A., Petersen, K., Igel, C., Lauze, F., Dam, E., Nielsen, M.: Deep Feature Learning for Knee Cartilage Segmentation Using a Triplanar Convolutional Neural Network. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 246–253. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40763-5_31

    Chapter  Google Scholar 

  13. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). doi:10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  14. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: Proceedings of 2016 International Conferece on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  15. Dou, Q., Yu, L., Chen, H., Jin, Y., Yang, X., Qin, J., Heng, P.A.: 3D deeply supervised network for automated segmentation of volumetric medical images. Med. Image Anal. 41, 40–54 (2017)

    Article  Google Scholar 

  16. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of ICML (2015)

    Google Scholar 

  17. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Advances in Neural Information Processing Systems, pp. 3320–3328 (2014)

    Google Scholar 

  18. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR 2009 (2009)

    Google Scholar 

  19. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR (2014)

    Google Scholar 

  20. Szegedy, C., Liu, W., Jia, Y., et al.: Going deeper with convolutions. In: CVPR 2015, pp. 1–9. IEEE (2015)

    Google Scholar 

  21. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision (CVPR), pp. 4489–4497 (2015)

    Google Scholar 

  22. Karasawa, K., Oda, M., Kitasakab, T., et al.: Multi-atlas pancreas segmentation: Atlas selection based on vessel structure. Med. Image Anal. 39, 18–28 (2017)

    Article  Google Scholar 

Download references

Acknowledgment

This study was partially supported by the Swiss National Science Foundation via project 205321_163224/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyan Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zeng, G., Yang, X., Li, J., Yu, L., Heng, PA., Zheng, G. (2017). 3D U-net with Multi-level Deep Supervision: Fully Automatic Segmentation of Proximal Femur in 3D MR Images. In: Wang, Q., Shi, Y., Suk, HI., Suzuki, K. (eds) Machine Learning in Medical Imaging. MLMI 2017. Lecture Notes in Computer Science(), vol 10541. Springer, Cham. https://doi.org/10.1007/978-3-319-67389-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67389-9_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67388-2

  • Online ISBN: 978-3-319-67389-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics