Skip to main content

Orness and Cardinality Indices for Averaging Inclusion-Exclusion Integrals

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10571))

Abstract

The inclusion-exclusion integral is a generalization of the discrete Choquet integral, defined with respect to a fuzzy measure and an interaction operator that replaces the minimum function in the Choquet integral’s Möbius representation. While in general this means that the resulting operator can be non-monotone, we have previously proposed using averaging aggregation functions for the interaction component, which under certain requirements can produce non-linear, but still averaging, operators. Here we consider how the orness of the overall function changes depending on the chosen component functions and hence propose a simplified calculation for approximating the orness of an averaging inclusion-exclusion integral.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    It has been noted in [16] that the least squares linear approximation of a given function f (which could be used to infer the importance of each variable) actually corresponds with the Banzhaf index, a calculation similar to the Shapley index.

  2. 2.

    We note however that in [7, 8], \(I(\mathbf x|A)\) is proposed to be arity-decreasing, i.e. \(I(\mathbf x|A) < I(\mathbf x|B)\) if \(B\subset A\). As noted in [9], instead using averaging functions (which are not necessarily arity-decreasing) will allow the IE-integral to be averaging.

  3. 3.

    Using linear programming techniques as found, e.g. in [11]. Full details of the transformations and code used to learn fuzzy measures can be found at http://aggregationfunctions.wordpress.com.

References

  1. Choquet, G.: Theory of capacities. Ann. Inst. Fourier 5, 131–295 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  2. Grabisch, M.: The applications of fuzzy integrals in multicriteria decision making. Eur. J. Oper. Res. 89, 445–456 (1996)

    Article  MATH  Google Scholar 

  3. Grabisch, M.: k-order additive discrete fuzzy measures and their representation. Fuzzy Sets Syst. 92, 167–189 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Grabisch, M., Kojadinovic, I., Meyer, P.: A review of methods for capacity identification in choquet integral based multi-attribute utility theory applications of the Kappalab R package. Eur. J. Oper. Res. 186, 766–785 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dujmovic, J.: Two integrals related to means, pp. 231–232. Univ. Beograd. Publ. Elektrotechn. Fak. (1973)

    Google Scholar 

  6. Yager, R.R.: On the cardinality index and attitudinal character of fuzzy measures. Int. J. Gen Syst 31(3), 303–329 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Honda, A., Okamoto, J.: Inclusion-exclusion integral and its application to subjective video quality estimation. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. CCIS, vol. 80, pp. 480–489. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14055-6_50

    Chapter  Google Scholar 

  8. Honda, A., Okazaki, Y.: Inclusion-exclusion integral and t-norm based data analysis model construction. In: Carvalho, J.P., Lesot, M.-J., Kaymak, U., Vieira, S., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2016. CCIS, vol. 610, pp. 65–77. Springer, Cham (2016). doi:10.1007/978-3-319-40596-4_7

    Google Scholar 

  9. Honda, A., James, S.: Averaging aggregation functions based on inclusion-exclusion integrals. In: Proceedings of the Joint World Congress of International Fuzzy Systems Association and International Conference on Soft Computing and Intelligent Systems, Otsu, Japan, pp. 1–6 (2017)

    Google Scholar 

  10. Labreuche, C.: On capacities characterized by two weight vectors. In: Carvalho, J.P., Lesot, M.-J., Kaymak, U., Vieira, S., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2016. CCIS, vol. 610, pp. 23–34. Springer, Cham (2016). doi:10.1007/978-3-319-40596-4_3

    Google Scholar 

  11. Beliakov, G., Bustince Sola, H., Calvo Sánchez, T.: A Practical Guide to Averaging Functions. SFSC, vol. 329. Springer, Cham (2016). doi:10.1007/978-3-319-24753-3

    Google Scholar 

  12. Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  13. Torra, V., Narukawa, Y.: Modeling Decisions. Information Fusion and Aggregation Operators. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  14. Yager, R.: On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans. Syst. Man Cybern. 18, 183–190 (1988)

    Article  MATH  Google Scholar 

  15. Shapley, L.S.: A value for n-person games. In: Kuhn, H., Tucker, A. (eds.) Contributions to the Theory of Games, Annals of Mathematics Studies, vol. II, No. 28, pp. 307–317. Princeton University Press (1953)

    Google Scholar 

  16. Marichal, J.-L., Mathonet, P.: Measuring the interactions among variables of functions over the unit hypercube. J. Math. Anal. Appl. 380, 105–116 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Marichal, J.L., Mathonet, P.: Symmetric approximations of pseudo-boolean functions with applications to influence indexes. Appl. Math. Lett. 25, 1121–1126 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dujmovic, J.: Weighted conjunctive and disjunctive means and their application in system evaluation, pp. 147–158. Univ. Beograd. Publ. Elektrotechn. Fak. (1974)

    Google Scholar 

  19. Liu, X.: An orness measure for quasi-arithmetic means. IEEE Trans. Fuzzy Syst. 14(6), 837–848 (2006)

    Article  Google Scholar 

  20. Marichal, J.-L.: Tolerant or intolerant character of interacting criteria in aggregation by the Choquet integral. Eur. J. Oper. Res. 155, 771–791 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yager, R.R.: Connectives and quantifiers in fuzzy sets. Fuzzy Sets Syst. 40, 39–76 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fanaee-T, H., Gama, J.: Event labeling combining ensemble detectors and background knowledge. Prog. Artif. Intell. 2, 1–15 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon James .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Honda, A., James, S., Rajasegarar, S. (2017). Orness and Cardinality Indices for Averaging Inclusion-Exclusion Integrals. In: Torra, V., Narukawa, Y., Honda, A., Inoue, S. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2017. Lecture Notes in Computer Science(), vol 10571. Springer, Cham. https://doi.org/10.1007/978-3-319-67422-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67422-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67421-6

  • Online ISBN: 978-3-319-67422-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics