Skip to main content

A Self-index on Block Trees

  • Conference paper
  • First Online:
String Processing and Information Retrieval (SPIRE 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10508))

Included in the following conference series:

Abstract

The Block Tree is a recently proposed data structure that reaches compression close to Lempel-Ziv while supporting efficient direct access to text substrings. In this paper we show how a self-index can be built on top of a Block Tree so that it provides efficient pattern searches while using space proportional to that of the original data structure. More precisely, if a Lempel-Ziv parse cuts a text of length n into z non-overlapping phrases, then our index uses \(O(z\lg (n/z))\) words and finds the occ occurrences of a pattern of length m in time \(O(m^2\lg n+occ\lg ^\epsilon n)\) for any constant \(\epsilon >0\).

Funded in part by Fondecyt Grant 1-170048.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belazzougui, D., Gagie, T., Gawrychowski, P., Kärkkäinen, J., Ordóñez, A., Puglisi, S.J., Tabei, Y.: Queries on LZ-bounded encodings. In: Proceedings of 25th Data Compression Conference (DCC), pp. 83–92 (2015)

    Google Scholar 

  2. Bille, P., Ettienne, M.B., Gørtz, I.L., Vildhøj, H.W.: Time-space trade-offs for Lempel-Ziv compressed indexing. In: Proceedings of 28th Annual Symposium on Combinatorial Pattern Matching (CPM). LIPIcs, vol. 78, pp. 16:1–16:17 (2017)

    Google Scholar 

  3. Chan, T.M., Larsen, K.G., Pătraşcu, M.: Orthogonal range searching on the RAM. In: Proceedings of 27th ACM Symposium on Computational Geometry (SoCG), pp. 1–10 (2011)

    Google Scholar 

  4. Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M., Sahai, A., Shelat, A.: The smallest grammar problem. IEEE Trans. Inf. Theory 51(7), 2554–2576 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Clark, D.: Compact PAT trees. Ph.D. thesis, University of Waterloo, Canada (1996)

    Google Scholar 

  6. Claude, F., Fariña, A., Martínez-Prieto, M., Navarro, G.: Universal indexes for highly repetitive document collections. Inf. Syst. 61, 1–23 (2016)

    Article  Google Scholar 

  7. Claude, F., Navarro, G.: Self-indexed grammar-based compression. Fundamenta Informaticae 111(3), 313–337 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Claude, F., Navarro, G.: Improved grammar-based compressed indexes. In: Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani, N. (eds.) SPIRE 2012. LNCS, vol. 7608, pp. 180–192. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34109-0_19

    Chapter  Google Scholar 

  9. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum queries on static arrays. SIAM J. Comput. 40(2), 465–492 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., Puglisi, S.J.: A faster grammar-based self-index. In: Dediu, A.-H., Martín-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 240–251. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28332-1_21

    Chapter  Google Scholar 

  11. Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., Puglisi, S.J.: LZ77-based self-indexing with faster pattern matching. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 731–742. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54423-1_63

    Chapter  Google Scholar 

  12. Golynski, A., Raman, R., Rao, S.S.: On the redundancy of succinct data structures. In: Gudmundsson, J. (ed.) SWAT 2008. LNCS, vol. 5124, pp. 148–159. Springer, Heidelberg (2008). doi:10.1007/978-3-540-69903-3_15

    Chapter  Google Scholar 

  13. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes. In: Proceedings of 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 841–850 (2003)

    Google Scholar 

  14. Jez, A.: Approximation of grammar-based compression via recompression. Theor. Comput. Sci. 592, 115–134 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jez, A.: A really simple approximation of smallest grammar. Theor. Comput. Sci. 616, 141–150 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kärkkäinen, J., Ukkonen, E.: Lempel-Ziv parsing and sublinear-size index structures for string matching. In: Proceedings of 3rd South American Workshop on String Processing (WSP), pp. 141–155 (1996)

    Google Scholar 

  17. Kreft, S., Navarro, G.: On compressing and indexing repetitive sequences. Theor. Comput. Sci. 483, 115–133 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Morrison, D.: PATRICIA - practical algorithm to retrieve information coded in alphanumeric. J. ACM 15(4), 514–534 (1968)

    Article  Google Scholar 

  19. Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Succinct representations of permutations and functions. Theor. Comput. Sci. 438, 74–88 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Navarro, G.: Wavelet trees for all. J. Discrete Algorithms 25, 2–20 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nishimoto, T., Tomohiro, I., Inenaga, S., Bannai, H., Takeda, M.: Dynamic index, LZ factorization, and LCE queries in compressed space. CoRR abs/1504.06954 (2015)

    Google Scholar 

  22. Okanohara, D., Sadakane, K.: Practical entropy-compressed rank/select dictionary. In: Proceedings of 9th Workshop on Algorithm Engineering and Experiments (ALENEX), pp. 60–70 (2007)

    Google Scholar 

  23. Rytter, W.: Application of Lempel-Ziv factorization to the approximation of grammar-based compression. Theor. Comput. Sci. 302(1–3), 211–222 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sakamoto, H.: A fully linear-time approximation algorithm for grammar-based compression. J. Discrete Algorithms 3(24), 416–430 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory 23(3), 337–343 (1977)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Many thanks to Simon Puglisi and an anonymous reviewer for pointing out several fatal typos in the formulas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo Navarro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Navarro, G. (2017). A Self-index on Block Trees. In: Fici, G., Sciortino, M., Venturini, R. (eds) String Processing and Information Retrieval. SPIRE 2017. Lecture Notes in Computer Science(), vol 10508. Springer, Cham. https://doi.org/10.1007/978-3-319-67428-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67428-5_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67427-8

  • Online ISBN: 978-3-319-67428-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics