Skip to main content

Breast Tumor Detection in Ultrasound Images Using Deep Learning

  • Conference paper
  • First Online:
Patch-Based Techniques in Medical Imaging (Patch-MI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10530))

Included in the following conference series:

Abstract

Detecting tumor regions in breast ultrasound images has always been an interesting topic. Due to the complex structure of breasts and the existence of noise in the ultrasound images, traditional handcraft feature based methods usually cannot achieve satisfactory results. With the recent advance of deep learning, the performance of object detection has been boosted to a great extent, especially for general object detection. In this paper, we aim to systematically evaluate the performance of several existing state-of-the-art object detection methods for breast tumor detection. To achieve that, we have collected a new dataset consisting of 579 benign and 464 malignant lesion cases with the corresponding ultrasound images manually annotated by experienced clinicians. Comprehensive experimental results clearly show that the recently proposed convolutional neural network based method, Single Shot MultiBox Detector (SSD), outperforms other methods in terms of both precision and recall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cheng, H.D., Shan, J., Ju, W., Guo, Y.H., Zhang, L.: Automated breast cancer detection and classification using ultrasound images: a survey. Pattern Recogn. 43, 299–317 (2010)

    Article  MATH  Google Scholar 

  2. Su, Y., Wang, Y.: Automatic detection of the region of interest from breast tumor ultrasound image. Chin. J. Biomed. Eng. 29(2), 178–184 (2010)

    Google Scholar 

  3. Shan, J., Cheng, H.D., Wang, X.Y.: Completely automated segmentation approach for breast ultrasound images using multiple-domain features. Ultrasound Med. Biol. 38(2), 262–275 (2012)

    Article  Google Scholar 

  4. Xian, M., Zhang, Y.T., Cheng, H.D.: Fully automatic segmentation of breast ultrasound images based on breast characteristics in space and frequency domains. Pattern Recogn. 48(2), 485–497 (2015)

    Article  Google Scholar 

  5. Liu, B., Cheng, H.D., Huang, J.H., Tian, J.W., Tang, X.L., Liu, J.F.: Fully automatic and segmentation-robust classification of breast tumors based on local texture analysis of ultrasound images. Pattern Recogn. 43(1), 280–298 (2010)

    Article  MATH  Google Scholar 

  6. Girshick, R.: Fast R-CNN. In: ICCV, pp. 1440–1448 (2015)

    Google Scholar 

  7. Ren, S.Q., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NIPS (2015)

    Google Scholar 

  8. Redmon, J., Divvala, S.K., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: CVPR, pp. 779–788 (2015)

    Google Scholar 

  9. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). doi:10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  10. Akselrod-Ballin, A., Karlinsky, L., Alpert, S., Hasoul, S., Ben-Ari, R., Barkan, E.: A region based convolutional network for tumor detection and classification in breast mammography. In: Carneiro, G., et al. (eds.) LABELS/DLMIA -2016. LNCS, vol. 10008, pp. 197–205. Springer, Cham (2016). doi:10.1007/978-3-319-46976-8_21

    Google Scholar 

  11. Viola, P., Jones, M.: Robust real-time face detection. In: IJCV (2004)

    Google Scholar 

  12. Sande, K., Uijlings, J., Gevers, T., Smeulders, A.: Segmentation as selective search for object recognition. In: ICCV (2011)

    Google Scholar 

  13. Alexe, B., Deselaers, T., Ferrari, V.: What is an object? In: CVPR (2010)

    Google Scholar 

  14. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR (2005)

    Google Scholar 

  15. Felzenszwalb, P., McAllester, D., Ramaman, D.: A discriminatively trained and multiscale: deformable part model. In: CVPR, pp. 1–8 (2008)

    Google Scholar 

  16. Ren, X.F., Ramanan, D.: Histograms of sparse codes for object detection. In: CVPR, pp. 3246–3253 (2013)

    Google Scholar 

  17. Ren, H.Y., Li, Z.N.: Object detection using generalization and efficiency balanced co-occurrence features. In: ICCV, pp. 46–54 (2015)

    Google Scholar 

  18. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR, pp. 580–587 (2014)

    Google Scholar 

  19. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 346–361. Springer, Cham (2014). doi:10.1007/978-3-319-10578-9_23

    Google Scholar 

  20. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2014)

    Google Scholar 

  21. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). doi:10.1007/978-3-319-10590-1_53

    Google Scholar 

  22. BI-RADS. https://en.wikipedia.org/wiki/BI-RADS

Download references

Acknowledgement

This work is supported by grants from the National Natural Science Foundation of China (61572109) and the Fundamental Research Funds for the Central Universities (ZYGX2016J164).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhantao Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Cao, Z. et al. (2017). Breast Tumor Detection in Ultrasound Images Using Deep Learning. In: Wu, G., Munsell, B., Zhan, Y., Bai, W., Sanroma, G., Coupé, P. (eds) Patch-Based Techniques in Medical Imaging. Patch-MI 2017. Lecture Notes in Computer Science(), vol 10530. Springer, Cham. https://doi.org/10.1007/978-3-319-67434-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67434-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67433-9

  • Online ISBN: 978-3-319-67434-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics