Abstract
Textual Inference is a research trend in Natural Language Processing (NLP) that has recently received a lot of attention by the scientific community. Textual Entailment (TE) is a specific task in Textual Inference that aims at determining whether a hypothesis is entailed by a text. This paper employs the Child-Sum Tree-LSTM for solving the challenging problem of textual entailment. Our approach is simple and able to generalize well without excessive parameter optimization. Evaluation done on SNLI, SICK and other TE datasets shows the competitiveness of our approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
Throughout the paper, we use the words ‘Premise’, ‘Text’ or ‘First text’ interchangeably to mean the same thing, except otherwise specified.
- 5.
- 6.
Specifically, the MIREL project: http://www.mirelproject.eu, which is drawn from our past project EUCases [6].
- 7.
- 8.
References
Androutsopoulos, I., Malakasiotis, P.: A survey of paraphrasing and textual entailment methods. J. Artif. Intell. Res. 38, 135–187 (2010)
Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)
Baudiš, P., Šedivỳ, J.: Sentence pair scoring: towards unified framework for text comprehension. arXiv preprint arXiv:1603.06127 (2016)
Bentivogli, L., Clark, P., Dagan, I., Giampiccolo, D.: The seventh pascal recognizing textual entailment challenge. In: Proceedings of TAC 2011 (2011)
Boella, G., Di Caro, L., Humphreys, L., Robaldo, L., Rossi, R., van der Torre, L.: Eunomos, a legal document and knowledge management system for the web to provide relevant, reliable and up-to-date information on the law. In: Artificial Intelligence and Law (2016, to appear)
Boella, G., Di Caro, L., Graziadei, M., Cupi, L., Salaroglio, C.E., Humphreys, L., Konstantinov, H., Marko, K., Robaldo, L., Ruffini, C. and Simov, K., Violato, A., Stroetmann, V.: Linking legal open data: Breaking the accessibility and language barrier in european legislation and case law. In: Proceedings of the 15th International Conference on Artificial Intelligence and Law, ICAIL 2015. ACM, New York (2015)
Boella, G., Di Caro, L., Rispoli, D., Robaldo, L.: A system for classifying multi-label text into EuroVoc. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Law, ICAIL 2013, pp. 239–240. ACM, New York (2013)
Boella, G., Di Caro, L., Robaldo, L.: Semantic relation extraction from legislative text using generalized syntactic dependencies and support vector machines. In: Morgenstern, L., Stefaneas, P., Lévy, F., Wyner, A., Paschke, A. (eds.) RuleML 2013. LNCS, vol. 8035, pp. 218–225. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39617-5_20
Bowman, S. R., Angeli, G., Potts, C., Manning, C.D.: A large annotated corpus for learning natural language inference. arXiv preprint arXiv:1508.05326 (2015)
Chen, D., Manning, C.D.: A fast and accurate dependency parser using neural networks. In: EMNLP, pp. 740–750 (2014)
Chen, Q., Zhu, X., Ling, Z., Wei, S., Jiang, H.: Enhancing and combining sequential and tree lstm for natural language inference. arXiv preprint arXiv:1609.06038 (2016)
Cheng, J., Dong, L., Lapata, M.: Long short-term memory-networks for machine reading. arXiv preprint arXiv:1601.06733 (2016)
Dagan, I., Dolan, B., Magnini, B., Roth, D.: Recognizing textual entailment: rational, evaluation and approaches-erratum. Nat. Lang. Eng. 16(01), 105–105 (2010)
Dagan, I., Glickman, O., Magnini, B.: The PASCAL recognising textual entailment challenge. In: Quiñonero-Candela, J., Dagan, I., Magnini, B., d’Alché-Buc, F. (eds.) MLCW 2005. LNCS, vol. 3944, pp. 177–190. Springer, Heidelberg (2006). doi:10.1007/11736790_9
Feng, M., Xiang, B., Glass, M.R., Wang, L., Zhou, B.: Applying deep learning to answer selection: a study and an open task. In: 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), pp. 813–820. IEEE (2015)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
John, A.K., Di Caro, L., Boella, G.: Normas at semeval-2016 task 1: Semsim: a multi-feature approach to semantic text similarity. In: Proceedings of SemEval (2016)
Kim, M.Y., Xu, Y., Goebel, R.: A convolutional neural network in legal question answering (2015)
Kim, M.-Y., Xu, Y., Goebel, R.: Legal question answering using ranking SVM and syntactic/semantic similarity. In: Murata, T., Mineshima, K., Bekki, D. (eds.) JSAI-isAI 2014. LNCS, vol. 9067, pp. 244–258. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48119-6_18
Liu, P., Qiu, X., Huang, X.: Modelling interaction of sentence pair with coupled-LSTMs. arXiv preprint arXiv:1605.05573 (2016)
Liu, Y., Sun, C., Lin, L., Wang, X.: Learning natural language inference using bidirectional LSTM model and inner-attention. arXiv preprint arXiv:1605.09090 (2016)
Munkhdalai, T., Yu, H.: Neural semantic encoders. arXiv preprint arXiv:1607.04315 (2016)
Parikh, A.P., Täckström, O., Das, D., Uszkoreit, J.: A decomposable attention model for natural language inference. arXiv preprint arXiv:1606.01933 (2016)
Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: EMNLP, vol. 14, pp. 1532–1543 (2014)
Gaona, M.A.R., Gelbukh, A., Bandyopadhyay, S.: Recognizing textual entailment using a machine learning approach. In: Advances in Soft Computing, pp. 177–185 (2010)
Rocktäschel, T., Grefenstette, E., Hermann, K.M., Kočiskỳ, T., Blunsom, P.: Reasoning about entailment with neural attention. arXiv preprint arXiv:1509.06664 (2015)
Sha, L., Li, S., Chang, B., Sui, Z., Jiang, T.: Recognizing textual entailment using probabilistic inference. In: EMNLP, pp. 1620–1625 (2015)
Socher, R., Huang, E., Pennin, J., Manning, C., Ng, A.: Dynamic pooling and unfolding recursive autoencoders for paraphrase detection. In: Advances in Neural Information Processing Systems, pp. 801–809 (2011)
Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)
Tai, K.S., Socher, R., Manning, C.D.: Improved semantic representations from tree-structured long short-term memory networks. arXiv preprint arXiv:1503.00075 (2015)
Tan, M., Xiang, B., Zhou, B.: LSTM-based deep learning models for non-factoid answer selection. arXiv preprint arXiv:1511.04108 (2015)
Wang, Z., Hamza, W., Florian, R.: Bilateral multi-perspective matching for natural language sentences. arXiv preprint arXiv:1702.03814 (2017)
Weston, J., Chopra, S., Bordes, A.: Memory networks. arXiv preprint arXiv:1410.3916 (2014)
Yin, W., Schütze, H., Xiang, B., Zhou, B.: Abcnn: attention-based convolutional neural network for modeling sentence pairs. arXiv preprint arXiv:1512.05193 (2015)
Zanzotto, F.M., Pennacchiotti, M.: Expanding textual entailment corpora from wikipedia using co-training. In: Proceedings of the COLING-Workshop on The Peoples Web Meets NLP: Collaboratively Constructed Semantic Resources, vol. 128 (2010)
Acknowledgments
Kolawole J. Adebayo has received funding from the Erasmus Mundus Joint International Doctoral (Ph.D.) programme in Law, Science and Technology. Luigi Di Caro and Guido Boella have received funding from the European Union’s H2020 research and innovation programme under the grant agreement No 690974 for the project “MIREL: MIning and REasoning with Legal texts”. Livio Robaldo has received funding from the European Union’s H2020 research and innovation programme under the grant agreement No 661007 for the project “ProLeMAS: PROcessing LEgal language in normative Multi-Agent Systems”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Kolawole John, A., Di Caro, L., Robaldo, L., Boella, G. (2017). Textual Inference with Tree-Structured LSTM. In: Bosse, T., Bredeweg, B. (eds) BNAIC 2016: Artificial Intelligence. BNAIC 2016. Communications in Computer and Information Science, vol 765. Springer, Cham. https://doi.org/10.1007/978-3-319-67468-1_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-67468-1_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67467-4
Online ISBN: 978-3-319-67468-1
eBook Packages: Computer ScienceComputer Science (R0)