Skip to main content

Detecting Attractors in Biological Models with Uncertain Parameters

  • Conference paper
  • First Online:
Computational Methods in Systems Biology (CMSB 2017)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10545))

Included in the following conference series:

Abstract

Complex behaviour arising in biological systems is typically characterised by various kinds of attractors. An important problem in this area is to determine these attractors. Biological systems are usually described by highly parametrised dynamical models that can be represented as parametrised graphs typically constructed as discrete abstractions of continuous-time models. In such models, attractors are observed in the form of terminal strongly connected components (tSCCs). In this paper, we introduce a novel method for detecting tSCCs in parametrised graphs. The method is supplied with a parallel algorithm and evaluated on discrete abstractions of several non-linear biological models.

This work has been supported by the Czech Science Foundation grant GA15-11089S and by the Czech National Infrastructure grant LM2015055.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barnat, J., Chaloupka, J., Van De Pol, J.: Distributed algorithms for SCC decomposition. J. Logic Comput. 21(1), 23–44 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Batt, G., Belta, C., Weiss, R.: Model checking genetic regulatory networks with parameter uncertainty. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 61–75. Springer, Heidelberg (2007). doi:10.1007/978-3-540-71493-4_8

    Chapter  Google Scholar 

  3. Batt, G., Yordanov, B., Weiss, R., Belta, C.: Robustness analysis and tuning of synthetic gene networks. Bioinformatics 23(18), 2415–2422 (2007)

    Article  Google Scholar 

  4. Beneš, N., Brim, L., Demko, M., Pastva, S., Šafránek, D.: A model checking approach to discrete bifurcation analysis. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp. 85–101. Springer, Cham (2016). doi:10.1007/978-3-319-48989-6_6

    Google Scholar 

  5. Brim, L., Češka, M., Demko, M., Pastva, S., Šafránek, D.: Parameter synthesis by parallel coloured CTL model checking. In: Roux, O., Bourdon, J. (eds.) CMSB 2015. LNCS, vol. 9308, pp. 251–263. Springer, Cham (2015). doi:10.1007/978-3-319-23401-4_21

    Chapter  Google Scholar 

  6. Brim, L., Demko, M., Pastva, S., Šafránek, D.: High-performance discrete bifurcation analysis for piecewise-affine dynamical systems. In: Abate, A., Šafránek, D. (eds.) HSB 2015. LNCS, vol. 9271, pp. 58–74. Springer, Cham (2015). doi:10.1007/978-3-319-26916-0_4

    Chapter  Google Scholar 

  7. Chandy, K.M., Misra, J.: Distributed computation on graphs: shortest path algorithms. Commun. ACM 25(11), 833–837 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chatain, T., Haar, S., Jezequel, L., Paulevé, L., Schwoon, S.: Characterization of reachable attractors using petri net unfoldings. In: Mendes, P., Dada, J.O., Smallbone, K. (eds.) CMSB 2014. LNCS, vol. 8859, pp. 129–142. Springer, Cham (2014). doi:10.1007/978-3-319-12982-2_10

    Google Scholar 

  9. Choo, S.M., Cho, K.H.: An efficient algorithm for identifying primary phenotype attractors of a large-scale boolean network. BMC Syst. Biol. 10(1), 95 (2016)

    Article  Google Scholar 

  10. Coayla-Teran, E.A., Mohammed, S.E.A., Ruffino, P.R.C.: Hartman-grobman theorems along hyperbolic stationary trajectories. Discret. Contin. Dyn. Syst. 17(2), 281–292 (2007)

    MathSciNet  MATH  Google Scholar 

  11. Collins, P., Habets, L., van Schuppen, J., Černá, I., Fabriková, J., Šafránek, D.: Abstraction of biochemical reaction systems on polytopes. In: IFAC World Congress, pp. 14869–14875. IFAC (2011)

    Google Scholar 

  12. Demko, M., Beneš, N., Brim, L., Pastva, S., Šafránek, D.: High-performance symbolic parameter synthesis of biological models: a case study. In: Bartocci, E., Lio, P., Paoletti, N. (eds.) CMSB 2016. LNCS, vol. 9859, pp. 82–97. Springer, Cham (2016). doi:10.1007/978-3-319-45177-0_6

    Chapter  Google Scholar 

  13. Dijkstra, E.W.: In reaction to Ernest Chang’s “Deadlock Detection” (1979). http://www.cs.utexas.edu/users/EWD/ewd07xx/EWD702.PDF

  14. Dilão, R.: The regulation of gene expression in eukaryotes: bistability and oscillations in repressilator models. J. Theor. Biol. 340, 199–208 (2014)

    Article  MathSciNet  Google Scholar 

  15. Dudkowski, D., Jafari, S., Kapitaniak, T., Kuznetsov, N.V., Leonov, G.A., Prasad, A.: Hidden attractors in dynamical systems. Phys. Rep. 637, 1–50 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grosu, R., Batt, G., Fenton, F.H., Glimm, J., Le Guernic, C., Smolka, S.A., Bartocci, E.: From cardiac cells to genetic regulatory networks. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 396–411. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1_31

    Chapter  Google Scholar 

  17. Guo, W., Yang, G., Wu, W., He, L., Sun, M.: A parallel attractor finding algorithm based on boolean satisfiability for genetic regulatory networks. PLOS ONE 9(4), 1–10 (2014)

    Google Scholar 

  18. MacArthur, B.D., Ma’ayan, A., Lemischka, I.R.: Systems biology of stem cell fate and cellular reprogramming. Nat. Rev. Mol. Cell Biol. 10(10), 672–681 (2009)

    Google Scholar 

  19. McLendon III, W., Hendrickson, B., Plimpton, S.J., Rauchwerger, L.: Finding strongly connected components in distributed graphs. J. Parallel Distrib. Comput. 65(8), 901–910 (2005)

    Article  MATH  Google Scholar 

  20. Milnor, J.: On the concept of attractor. Commun. Math. Phys. 99(2), 177–195 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  21. Müller, S., Hofbauer, J., Endler, L., Flamm, C., Widder, S., Schuster, P.: A generalized model of the repressilator. J. Math. Biol. 53(6), 905–937 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Reif, J.H.: Depth-first search is inherently sequential. Inf. Process. Lett. 20(5), 229–234 (1985). https://doi.org/10.1016/0020-0190(85)90024-9

    Article  MathSciNet  MATH  Google Scholar 

  23. Sullivan, D., Williams, R.: On the homology of attractors. Topology 15(3), 259–262 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  24. Swat, M., Kel, A., Herzel, H.: Bifurcation analysis of the regulatory modules of the mammalian G1/S transition. Bioinformatics 20(10), 1506–1511 (2004)

    Article  Google Scholar 

  25. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972). https://doi.org/10.1137/0201010

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikola Beneš .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Barnat, J. et al. (2017). Detecting Attractors in Biological Models with Uncertain Parameters. In: Feret, J., Koeppl, H. (eds) Computational Methods in Systems Biology. CMSB 2017. Lecture Notes in Computer Science(), vol 10545. Springer, Cham. https://doi.org/10.1007/978-3-319-67471-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67471-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67470-4

  • Online ISBN: 978-3-319-67471-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics