Skip to main content

Identifying Functional Families of Trajectories in Biological Pathways by Soft Clustering: Application to TGF-\(\beta \) Signaling

  • Conference paper
  • First Online:
Computational Methods in Systems Biology (CMSB 2017)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10545))

Included in the following conference series:

  • 1012 Accesses

Abstract

The study of complex biological processes requires to forgo simplified models for extensive ones. Yet, these models’ size and complexity place them beyond understanding. Their analysis requires new methods for identifying general patterns. The Transforming Growth Factor TGF-\(\beta \) is a multifunctional cytokine that regulates mammalian cell development, differentiation, and homeostasis. Depending on the context, it can play the antagonistic roles of growth inhibitor or of tumor promoter. Its context-dependent pleiotropic nature is associated with complex signaling pathways. The most comprehensive model of TGF-\(\beta \)-dependent signaling is composed of 15,934 chains of reactions (trajectories) linking TGF-\(\beta \) to at least one of its 159 target genes. Identifying functional patterns in such a network requires new automated methods.

This article presents a framework for identifying groups of similar trajectories composed of the same molecules using an exhaustive and without prior assumptions approach. First, the trajectories were clustered using the Relevant Set Correlation model, a shared nearest-neighbors clustering method. Five groups of trajectories were identified. Second, for each cluster the over-represented molecules were determined by scoring the frequency of each molecule implicated in trajectories. Third, Gene set enrichment analysis on the clusters of trajectories revealed some specific TGF-\(\beta \)-dependent biological processes, with different clusters associated to the antagonists roles of TGF-\(\beta \). This confirms that our approach yields biologically-relevant results. We developed a web interface that facilitates graph visualization and analysis.

Our clustering-based method is suitable for identifying families of functionally-similar trajectories in the TGF-\(\beta \) signaling network. It can be generalized to explore any large-scale biological pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.irisa.fr/dyliss/public/tgfbVisualization/supplementaryData.

References

  1. Aldridge, B.B., Burke, J.M., Lauffenburger, D.A., Sorger, P.K.: Physicochemical modelling of cell signalling pathways. Nat. Cell Biol. 8(11), 1195–1203 (2006)

    Article  Google Scholar 

  2. Andrieux, G., Le Borgne, M., Théret, N.: An integrative modeling framework reveals plasticity of TGF-\(\beta \) signaling. BMC Syst. Biol. 8(1), 1 (2014)

    Article  Google Scholar 

  3. Bierie, B., Moses, H.L.: Tumour microenvironment: TGF\(\beta \): the molecular Jekyll and Hyde of cancer. Nat. Rev. Cancer 6(7), 506–520 (2006)

    Article  Google Scholar 

  4. ElKalaawy, N., Wassal, A.: Methodologies for the modeling and simulation of biochemical networks, illustrated for signal transduction pathways: a primer. Biosystems 129, 1–18 (2015)

    Article  Google Scholar 

  5. Hamzaoui, A., Joly, A., Boujemaa, N.: Multi-source shared nearest neighbours for multi-modal image clustering. Multimedia Tools Appl. 51(2), 479–503 (2011)

    Article  Google Scholar 

  6. Houle, M.E.: The relevant-set correlation model for data clustering. Stat. Anal. Data Min. 1(3), 157–176 (2008)

    Article  MathSciNet  Google Scholar 

  7. Ikushima, H., Miyazono, K.: Biology of transforming growth factor-\(\beta \) signaling. Curr. Pharm. Biotechnol. 12(12), 2099–2107 (2011)

    Article  Google Scholar 

  8. Joshi, A., Kaur, R.: A review: comparative study of various clustering techniques in data mining. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3(3) (2013)

    Google Scholar 

  9. Kashtan, N., Alon, U.: Spontaneous evolution of modularity and network motifs. Proc. Natl. Acad. Sci. U.S.A. 102(39), 13773–13778 (2005)

    Article  Google Scholar 

  10. Kestler, H.A., Wawra, C., Kracher, B., Kühl, M.: Network modeling of signal transduction: establishing the global view. BioEssays 30(11–12), 1110–1125 (2008)

    Article  Google Scholar 

  11. Lim, W.A.: Designing customized cell signalling circuits. Nat. Rev. Mol. Cell Biol. 11(6), 393–403 (2010)

    Article  Google Scholar 

  12. Luo, K.: Signaling cross talk between TGF-\(\beta \)/Smad and other signaling pathways. Cold Spring Harbor Perspect. Biol. 9(1), a022137 (2017)

    Article  Google Scholar 

  13. Massagué, J.: TGF\(\beta \) signalling in context. Nat. Rev. Mol. Cell Biol. 13(10), 616–630 (2012)

    Article  Google Scholar 

  14. Mu, Y., Gudey, S.K., Landström, M.: Non-smad signaling pathways. Cell Tissue Res. 347(1), 11–20 (2012)

    Article  Google Scholar 

  15. Peisajovich, S.G., Garbarino, J.E., Wei, P., Lim, W.A.: Rapid diversification of cell signaling phenotypes by modular domain recombination. Science 328(5976), 368–372 (2010)

    Article  Google Scholar 

  16. Rauzy, A.: Guarded transition systems: a new states/events formalism for reliability studies. Proc. Inst. Mech. Eng. Part O: J. Risk Reliab. 222(4), 495–505 (2008)

    Article  Google Scholar 

  17. Saadatpour, A., Albert, R.: Discrete dynamic modeling of signal transduction networks. In: Liu, X., Betterton, M.D. (eds.) Computational Modeling of Signaling Networks, pp. 255–272. Humana Press, Totowa (2012)

    Chapter  Google Scholar 

  18. Saadatpour, A., Albert, R., Reluga, T.C.: A reduction method for boolean network models proven to conserve attractors. SIAM J. Appl. Dyn. Syst. 12(4), 1997–2011 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Samaga, R., Klamt, S.: Modeling approaches for qualitative and semi-quantitative analysis of cellular signaling networks. Cell Commun. Signal. 11(1), 1 (2013)

    Article  Google Scholar 

  20. Schaefer, C.F., Anthony, K., Krupa, S., Buchoff, J., Day, M., Hannay, T., Buetow, K.H.: PID: the pathway interaction database. Nucleic Acids Res. 37(suppl 1), D674–D679 (2009)

    Article  Google Scholar 

  21. Scott, J.D., Pawson, T.: Cell signaling in space and time: where proteins come together and when they’re apart. Science 326(5957), 1220–1224 (2009)

    Article  Google Scholar 

  22. Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., et al.: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. 102(43), 15545–15550 (2005)

    Article  Google Scholar 

  23. Supek, F., Bošnjak, M., Škunca, N., Šmuc, T.: Revigo summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6(7), e21800 (2011)

    Article  Google Scholar 

  24. Tian, M., Neil, J.R., Schiemann, W.P.: Transforming growth factor-\(\beta \) and the hallmarks of cancer. Cell. Signal. 23(6), 951–962 (2011)

    Article  Google Scholar 

  25. Zañudo, J.G., Albert, R.: An effective network reduction approach to find the dynamical repertoire of discrete dynamic networks. Chaos Interdisc. J. Nonlinear Sci. 23(2), 025111 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhao, Y., Kim, J., Filippone, M.: Aggregation algorithm towards large-scale boolean network analysis. IEEE Trans. Autom. Control 58(8), 1976–1985 (2013)

    Article  MathSciNet  Google Scholar 

  27. Zi, Z., Chapnick, D.A., Liu, X.: Dynamics of TGF-\(\beta \)/Smad signaling. FEBS Lett. 586(14), 1921–1928 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Coquet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Coquet, J., Theret, N., Legagneux, V., Dameron, O. (2017). Identifying Functional Families of Trajectories in Biological Pathways by Soft Clustering: Application to TGF-\(\beta \) Signaling. In: Feret, J., Koeppl, H. (eds) Computational Methods in Systems Biology. CMSB 2017. Lecture Notes in Computer Science(), vol 10545. Springer, Cham. https://doi.org/10.1007/978-3-319-67471-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67471-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67470-4

  • Online ISBN: 978-3-319-67471-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics