
ar
X

iv
:1

70
5.

05
13

7v
1

 [
cs

.P
L

]
 1

5
M

ay
 2

01
7

Operational Semantics of Process Monitors

Jun Inoue and Yoriyuki Yamagata

National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31
Midorigaoka, Ikeda, Osaka 563-8577 Japan {jun.inoue,

yoriyuki.yamagata}@aist.go.jp

Abstract. CSPE is a specification language for runtime monitors that
can directly express concurrency in a bottom-up manner that composes
the system from simpler, interacting components. It includes constructs
to explicitly flag failures to the monitor, which unlike deadlocks and live-
locks in conventional process algebras, propagate globally and aborts the
whole system’s execution. Although CSPE has a trace semantics along
with an implementation demonstrating acceptable performance, it lacks
an operational semantics. An operational semantics is not only more
accessible than trace semantics but also indispensable for ensuring the
correctness of the implementation. Furthermore, a process algebra like
CSPE admits multiple denotational semantics appropriate for different
purposes, and an operational semantics is the basis for justifying such se-
mantics’ integrity and relevance. In this paper, we develop an SOS-style
operational semantics for CSPE, which properly accounts for explicit
failures and will serve as a basis for further study of its properties, its
optimization, and its use in runtime verification.

Keywords: Operational Semantics, Concurrency, Runtime Monitoring, Com-
municating Sequential Processes

1 Introduction

Specification-based runtime monitoring [5] checks a program’s execution trace
against a formal specification. Often more rigorous than testing due to the
presence of a formal specification, this technique is also computationally much
cheaper than formal verification methods like model checking, as it only needs
to look at concrete program runs with instrumentation. CSPE [10] is a language
based on Hoare’s Communicating Sequential Processes [6] for developing the for-
mal specification. Unlike many other languages in this niche, CSPE can directly
express concurrency. Moreover, it builds up the specification in a bottom-up
manner by composing smaller, interacting components, helping to model com-
plex behavior.

CSPE ’s main appeal as a specification language, compared to plain CSP, is a
FAIL construct that signals a global failure, aborting all processes in the model
at once. This construct can be used like assert(false) in C or Java, allowing to
code invariants that mark some states as (should-be) unreachable. By contrast,

http://arxiv.org/abs/1705.05137v1

Event e ∈ Σ
Event Variable x ∈ X
Term P,Q ∈ Terms ::= STOP | FAIL | ?x : E → P | P � Q | P ||E Q
Event Set E ::= f(y1, . . . , yn) where f : Σn → 2Σ is computable
Event Set Param y ::= x | e

Fig. 1. Syntax of CSPE .

deadlocks and livelocks, the conventional notions of failure in CSP, affect only
the deadlocked or livelocked process(es). These failures are thus very difficult to
propagate into a failure for the entire system, as desired for assertion failures.
However, the semantics of how FAIL propagates throughout the model requires
special treatment. Because the propagation preempts all other activities, normal
execution rules must apply only when FAIL is not currently propagating. This
is a negative constraint, which is generally problematic [4].

While earlier work [10] demonstrated a trace semantics and a reasonably effi-
cient implementation for CSPE , an operational semantics has been lacking. De-
veloping an operational semantics is highly desirable for several reasons. Firstly,
though a trace semantics more naturally defines the set of behaviors (i.e. traces)
that comply with a CSPE specification, an operational semantics more directly
defines the implementation. Secondly, process algebras admit multiple denota-
tional semantics capturing different aspects of operationally defined behavior [3].
Investigating the full spectrum of such semantics requires an operational seman-
tics. Finally, an operational semantics provides a more accessible presentation
of the semantics than denotational semantics.

1.1 Contributions

In this paper, after reviewing the syntax and trace semantics of CSPE (Sec-
tion 2), we present the following contributions.

– We define an operational semantics in SOS format [8], which properly cap-
tures the propagation of FAIL while avoiding the complexities of rules with
negative premises (Section 3).

– We prove that the operational semantics induces the previously published
trace semantics (Section 4).

2 Syntax and Trace Semantics of CSPE

This section reviews the syntax and trace semantics of CSPE . Figure 1 presents
the syntax. A CSPE term represents a process, which is an entity that succes-
sively emits events drawn from an alphabet Σ. Terms are built from the following
constructs, with the indicated meanings. For a thorougher explanation, see [10].

– The stuck term STOP does not emit anything.
– The failing term FAIL aborts all processes.

Trace s, t ∈ Σ∗

Trace Set T ∈ TraceSets ::= prefix-closed subsets of Σ∗

Trace Set Operations

eT := {ε} ∪ {et | t ∈ T}

T (e) := {t | et ∈ T}

∅ ||E T := T ||E ∅ := ∅ (1)

T1 ||E T2 :=
⋃

e∈E

e(T1(e) ||E T2(e)) ∪
⋃

e∈Σ−E

(e(T1(e) ||E T2) ∪ e(T1 ||E T2(e))) (2)

Trace Semantics

JSTOPK := {ε} JP � QK := JP K ∪ JQK

JFAILK := ∅ JP ||E QK := JP K ||E JQK

J?x : E → P K := {ε} ∪
⋃

e∈E

eJ[e/x]P K

Fig. 2. Trace semantics of CSPE. Equation (1) takes precedence over eq. (2), so the
latter applies only if the former does not.

– Prefix ?x : E → P chooses and emits an event e ∈ E, then executes [e/x]P .
– Choice P � Q executes P or Q, whichever manages to emit something first.
– Parallel composition P ||E Q executes P and Q in parallel. Their events are

interleaved arbitrarily, except events in E are synchronized.

An event set E can be specified by any computable function parametrized by
the x’s bound by surrounding prefix operators.

In this short paper, we omit recursion and the terminating action X in the
interest of conciseness. This paper’s focus is on analyzing FAIL, and X com-
plicates the presentation substantially without adding anything of conceptual
significance. Recursion seems to be similar, though it is still under investigation.

Figure 2 presents the trace semantics. A trace is a (possibly empty) sequence
of events, and Σ∗ is the set of all traces. The concatenation of traces s and t
is written st. A trace set is any prefix-closed set of traces, which can be empty,
unlike in conventional process algebras. The trace semantics of CSPE assigns to
each term P a trace set JP K, which is intuitively the set of traces P can emit.

The semantic map uses some operations on trace sets. If T is a trace set, eT
prepends e to all members of T and adjoins ε, while T (e) discards all traces in
T that do not start with e and drops the leading e from all remaining traces.
The ||E operator is defined by eqs. (1) and (2). Though significantly simplified,
these equations are equivalent to the ones found in [10] modulo the absence
of X. In [10], this operator was defined “coinductively”, which was correct but
misleading. Formally, by the Knaster-Tarski Theorem, the defining equations (1)
and (2) have a greatest solution in the complete lattice of total binary functions
on TraceSets ordered by point-wise inclusion, which was taken to be ||E . However,
if ||E

′
and ||E

′′
are any two solutions of these equations, then for any T1 and T2,

every trace in T1 ||E
′
T2 is also in T1 ||E

′′
T2, by straightforward induction on

the trace’s length. Thus, the solution is unique, and ||E is this unique solution.

Action a ::= e | τ
Doomed Term D ∈ Doomed ::= FAIL | D � D | D ||E P | P ||E D

Viable Term P̂ , Q̂ ∈ Terms−Doomed

Operational Semantics

e ∈ E

(?x : E → P)
e
7→ [e/x]P

P
τ
7→ P ′

P � Q
τ
7→ P ′

� Q

Q
τ
7→ Q′

P � Q
τ
7→ P � Q′

P
e
7→ P ′

P � Q
e
7→ P ′

Q
e
7→ Q′

P � Q
e
7→ Q′

P
a
7→ P ′ a 6∈ E

P ||E Q̂
a
7→ P ′ ||E Q̂

Q
a
7→ Q′ a 6∈ E

P̂ ||E Q
a
7→ P̂ ||E Q′

P̂
e
7→ P ′ Q̂

e
7→ Q′ e ∈ E

P̂ ||E Q̂
e
7→ P ′ ||E Q′

D1

τ
7→ P1

D1 ||E D2

τ
7→ P1 ||E D2

D2

τ
7→ P2

D1 ||E D2

τ
7→ D1 ||E P2

FAIL � FAIL
τ
7→ FAIL FAIL ||E P

τ
7→ FAIL P ||E FAIL

τ
7→ FAIL

P
ε
Z⇒ P

P
a
7→ P ′ s

Z⇒ P ′′

P
as
Z⇒ P ′′

P
τ
7→ P ′ s

Z⇒ P ′′

P
s
Z⇒ P ′′

Fig. 3. Operational semantics of CSPE .

Lemma 1. ||E is continuous, i.e. (
⋃
S1) ||E (

⋃
S2) =

⋃
T1∈S1,T2∈S2

T1 ||E T2.

Proof. The defining equations (1) and (2) preserve continuity, so in fact the
Knaster-Tarski construction can be carried out in the space of continuous binary
operators, which is also a complete lattice under point-wise inclusion.

3 Operational Semantics

This section presents the operational semantics. The semantics is given in Fig-
ure 3, which defines internal transitions P

a
7→ Q between terms. Some transi-

tions do not emit events but instead emit the silent action τ . A visible transition
P

s
Z⇒ Q happens when P internally transitions to Q in zero or more steps, and

the non-τ actions it emits along the way forms s.
The main challenge in this semantics is capturing the propagation of FAIL.

For example, in P ||∅ FAIL, the P must not be allowed to keep emitting events,
for then P could do so indefinitely, withholding the propagation of FAIL. Instead,
FAIL should kill all processes including P , transitioning the whole term to FAIL.
To achieve this effect, the usual rule that allows the left operand to transition
must apply only when the right operand is not failing. This constraint is tricky
to capture because it is a negative constraint.

In our semantics, the constraint is captured by the viability annotation P̂ .
This annotation restricts the range of the metavariable P̂ to exclude doomed
terms, i.e. terms for which transitioning to FAIL has become inevitable and are
now propagating FAIL within themselves. These annotations are placed so that

when a term is doomed, rules that propagate FAIL become the only applicable
ones, thus forcing the propagation to take place.

Proposition 2. A doomed process always transitions to FAIL while emitting
nothing but τ .

Proof. D
a
7→ P implies a = τ ∧ P ∈ Doomed ∧ |D| > |P |, where |P | denotes

term size, by induction on D. Thus, a doomed term can only τ-transition, and
only finitely many times, while staying doomed. Another induction shows ∀D 6=
FAIL. ∃D′. D

τ
7→ D′, so a doomed term keeps transitioning until it reaches FAIL.

4 Correspondence Between the Semantics

This section establishes a correspondence between the two semantics: a process’
denotation is precisely the set of traces it can emit, up to but not including any
transitions that doom the process. This means that the monitor comparing a
system to P can declare a failure as soon as the system’s trace strays out of JP K.

Theorem 3. JP K = {s | ∃M. P
s
Z⇒ M 6∈ Doomed}.

A special case of this theorem is particularly illuminating: the doomed set is
precisely the set of terms with empty trace sets, corresponding to the fact that
doomed terms silently transition to FAIL.

Proposition 4. P ∈ Doomed ⇐⇒ JP K = ∅.

Proof. Induction on P .

Furthermore, trace sets faithfully follow non-silent transitions, in that the traces
which follow an event e in JP K are precisely the traces of terms Q that follow P
after a sequence of transitions that emit e.

Lemma 5. JP K(e) =
⋃

P
e

Z⇒Q
JQK.

Proof. Induction on the size of P , where event sets do not count toward size, e.g.
|?x : E → P ′| := |P ′|+1. This way, |[e/x]P ′| = |P ′|, so when P = (?x : E → P ′),
the inductive hypothesis applies to [e/x]P ′, despite it not being a subterm. Several
lemmas are needed along the way, two of which are of particular note. Take for
example P = P1 ||E P2 with JP1K, JP2K 6= ∅ and e ∈ E. Inductive hypotheses
give JP K(e) = (

⋃
P1

e

Z⇒Q1

JQ1K) ||E (
⋃

P2

e

Z⇒Q2

JQ2K). Then, continuity (Lemma 1)

lets us commute the
⋃

and ||E, equating this to
⋃

P1

e

Z⇒Q1,P2

e

Z⇒Q2

(JQ1K ||E JQ2K).

Then, a lemma characterizing those Q with P
e
Z⇒ Q equates this to

⋃
P

e

Z⇒Q
JQK.

Theorem 3 is a straightforward consequence of these facts.

Proof (of Theorem 3). We show s ∈ JP K ⇐⇒ ∃Q. P
s
Z⇒ Q 6∈ Doomed by in-

duction on s. For the base case, ε ∈ JP K ⇐⇒ P 6∈ Doomed by Proposition 4. If

P 6∈ Doomed, then P
ε
Z⇒ P 6∈ Doomed, and if P ∈ Doomed, then P can only tran-

sition inside Doomed as noted in the proof of Proposition 2. For the inductive
step, s breaks down as s = es′, and s ∈ JP K ⇐⇒ s′ ∈ JP K(e). By Lemma 5, this

is equivalent to having s′ ∈ JP ′K and P
e
Z⇒ P ′ for some P ′, which by inductive

hypothesis is equivalent to ∃P ′, Q. P
e
Z⇒ P ′ s′

Z⇒ Q 6∈ Doomed.

5 Related Works

The main issue with CSPE semantics is the propagation of FAIL, which en-
tails the negative constraint that normal computation rules apply only if FAIL-
propagation rules do not. Negative premises of the form P 6

a
7→ come quite natu-

rally as a means for codifying such constraints, but negative premises are gen-
erally quite problematic. A transition relation satisfying negative rules may be
not-existent, or non-unique, with no obvious guiding principle (such as minimal-
ity) in choosing the “right” one. Some formats do guarantee well-definedness,
such as GSOS with the witnessing constraint [2] and ntyft/ntyxt [4]. But even
then, negative rules tend to betray desirable properties such as compositionality
of some forms of bisimulation [1].

Our approach exploits the fact that we only have a very specific negative
constraint – the absence of doomed subprocesses – and encodes it with a restric-
tion on the range of metavariables in transition rules. With trick, we manage to
avoid negative premises altogether, essentially turning the system into a positive
one. This approach is very commonly employed, e.g. in reduction rules for the
call-by-value λ calculus [7], where the argument in a function application should
be evaluated only if the function expression cannot be evaluated any further.

We identify FAIL-induced failures by transitions into FAIL, but an alterna-
tive approach would be to have FAIL emit a special event ̥, just as termination
is signalled by X. Though we have not pursued this idea in detail, the central
concern there will be to give ̥ higher priority than all other events. Prioritized
transition also involves a negative constraint but is known to be quite well-
behaved, being translatable to plain CSP [9]. At the moment, it is not clear if
FAIL propagation can be translated to the prioritized-transition primitive in [9].

6 Conclusion

We gave an operational semantics for CSPE that adequately captures the be-
havior of FAIL, the global failure operator, with positive operational rules. This
semantics induces the previously defined trace semantics. As noted in the in-
troduction, this development enables studies of other types of denotational se-
mantics, while informing the implementation. An interesting direction of future
work is to see if FAIL can be specified by priorities, and if that approach yields
better-behaved semantics.

Acknowledgment

The authors would like to thank Yoshinao Isobe for comments on an earlier draft
of this paper and stimulating discussions.

References

1. Bloom, B.: Structural operational semantics for weak bisimulations. Theoretical
Computer Science 146(1), 25–68 (1995)

2. Bloom, B., Istrail, S., Meyer, A.R.: Bisimulation can’t be traced. Journal of the
ACM 42(1), 232–268 (1995)

3. van Glabbeek, R.J.: The linear time - branching time spectrum I. The semantics
of concrete, sequential processes, chap. 1, pp. 3–100. Elsevier (2001)

4. Groote, J.F.: Transition system specifications with negative premises. Theoretical
Computer Science 118(2), 263 – 299 (1993)

5. Havelund, K., Reger, G.: Specification of parametric monitors, pp. 151–189.
Springer Fachmedien Wiesbaden, Wiesbaden (2015)

6. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA (1985)

7. Mitchell, J.C.: Foundations for Programming Languages. MIT Press (1996)
8. Plotkin, G.D.: A structural approach to operational semantics. The Journal of

Logic and Algebraic Programming 60, 17–139 (2004)
9. Roscoe, A.: The expressiveness of CSP with priority. Electronic Notes in Theoret-

ical Computer Science 319, 387 – 401 (2015)
10. Yamagata, Y., Artho, C., Hagiya, M., Inoue, J., Ma, L., Tanabe, Y., Yamamoto, M.:

Runtime Monitoring for Concurrent Systems, pp. 386–403. Springer International
Publishing, Cham (2016)

	Operational Semantics of Process Monitors

