Abstract
Annotating large collections of medical images is essential for building robust image analysis pipelines for different applications, such as disease detection. This process involves expert input, which is costly and time consuming. Semiautomatic labeling and expert sourcing can speed up the process of building such collections. In this work we report innovations in both of these areas. Firstly, we have developed an algorithm inspired by active learning and self training that significantly reduces the number of annotated training images needed to achieve a given level of accuracy on a classifier. This is an iterative process of labeling, training a classifier, and testing that requires a small set of labeled images at the start, complemented with human labeling of difficult test cases at each iteration. Secondly, we have built a platform for large scale management and indexing of data and users, as well as for creating and assigning tasks such as labeling and contouring for big data medical imaging studies. This is a web-based platform and provides the tooling for both researchers and annotators, all within a simple dynamic user interface. Our annotation platform also streamlines the process of iteratively training and labeling in algorithms such as active learning/self training described here. In this paper, we demonstrate that the combination of the platform and the proposed algorithm significantly reduces the workload involved in building a large collection of labeled cardiac echo images.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 1097–1105. Curran Associates, Inc. (2012)
Maier-Hein, L., Mersmann, S., Kondermann, D., Bodenstedt, S., Sanchez, A., Stock, C., Kenngott, H.G., Eisenmann, M., Speidel, S.: Can masses of non-experts train highly accurate image classifiers? In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8674, pp. 438–445. Springer, Cham (2014). doi:10.1007/978-3-319-10470-6_55
Moradi, M., Guo, Y., Gur, Y., Negahdar, M., Syeda-Mahmood, T.: A cross-modality neural network transform for semi-automatic medical image annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 300–307. Springer, Cham (2016). doi:10.1007/978-3-319-46723-8_35
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). doi:10.1007/978-3-319-24574-4_28
Rubin, D.L., Willrett, D., O’Connor, M.J., Hage, C., Kurtz, C., Moreira, D.A.: Automated tracking of quantitative assessments of tumor burden in clinical trials. Translational Oncol. 7, 300–307 (2014)
Syeda-Mahmood, T., Guo, Y., Moradi, M., Beymer, D., Rajan, D., Cao, Y., Gur, Y., Negahdar, M.: Identifying patients at risk for aortic stenosis through learning from multimodal data. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 238–245. Springer, Cham (2016). doi:10.1007/978-3-319-46726-9_28
Tong, S.: Active learning: theory and applications. Ph.D. thesis, Stanford University, August 2001
Vajda, S., You, D., Antani, S.K., Thoma, G.R.: Label the many with a few: semi-automatic medical image modality discovery in a large image collection. In: 2014 IEEE Symposium on Computational Intelligence in Healthcare and e-health (CICARE), pp. 167–173, December 2014
Zhu, X.: Semi-supervised learning literature survey. Technical report (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Gur, Y., Moradi, M., Bulu, H., Guo, Y., Compas, C., Syeda-Mahmood, T. (2017). Towards an Efficient Way of Building Annotated Medical Image Collections for Big Data Studies. In: Cardoso, M., et al. Intravascular Imaging and Computer Assisted Stenting, and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis. LABELS STENT CVII 2017 2017 2017. Lecture Notes in Computer Science(), vol 10552. Springer, Cham. https://doi.org/10.1007/978-3-319-67534-3_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-67534-3_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67533-6
Online ISBN: 978-3-319-67534-3
eBook Packages: Computer ScienceComputer Science (R0)