Skip to main content

SwifTree: Interactive Extraction of 3D Trees Supporting Gaming and Crowdsourcing

  • Conference paper
  • First Online:
Intravascular Imaging and Computer Assisted Stenting, and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis (LABELS 2017, STENT 2017, CVII 2017)

Abstract

Analysis of vascular and airway trees of circulatory and respiratory systems is important for many clinical applications. Automatic segmentation of these tree-like structures from 3D data remains an open problem due to their complex branching patterns, geometrical diversity, and pathology. On the other hand, it is challenging to design intuitive interactive methods that are practical to use in 3D for trees with tens or hundreds of branches. We propose SwifTree, an interactive software for tree extraction that supports crowdsourcing and gamification. Our experiments demonstrate that: (i) aggregating the results of multiple SwifTree crowdsourced sessions achieves more accurate segmentation; (ii) using the proposed game-mode reduces time needed to achieve a pre-set tree segmentation accuracy; and (iii) SwifTree outperforms automatic segmentation methods especially with respect to noise robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdoulaev, G., Cadeddu, S., Delussu, G., Donizelli, M., Formaggia, L., Giachetti, A., Gobbetti, E., Leone, A., Manzi, C., Pili, P., et al.: ViVa: the virtual vascular project. IEEE Trans. Inform. Technol. Biomed. 2(4), 268–274 (1998)

    Article  Google Scholar 

  2. Abeysinghe, S.S., Ju, T.: Interactive skeletonization of intensity volumes. Vis. Comput. 25(5–7), 627–635 (2009)

    Article  Google Scholar 

  3. Albarqouni, S., Baur, C., Achilles, F., Belagiannis, V., Demirci, S., Navab, N.: Aggnet: deep learning from crowds for mitosis detection in breast cancer histology images. IEEE Trans. Med. Imaging 35(5), 1313–1321 (2016)

    Article  Google Scholar 

  4. Albarqouni, S., Matl, S., Baust, M., Navab, N., Demirci, S.: Playsourcing: a novel concept for knowledge creation in biomedical research. In: Carneiro, G., et al. (eds.) LABELS/DLMIA -2016. LNCS, vol. 10008, pp. 269–277. Springer, Cham (2016). doi:10.1007/978-3-319-46976-8_28

    Google Scholar 

  5. Cetin, S., Demir, A., Yezzi, A., Degertekin, M., Unal, G.: Vessel tractography using an intensity based tensor model with branch detection. TMI 32(2), 348–363 (2013)

    Google Scholar 

  6. Chávez-Aragón, A., Lee, W.-S., Vyas, A.: A crowdsourcing web platform-hip joint segmentation by non-expert contributors. In: MeMeA, pp. 350–354. IEEE (2013)

    Google Scholar 

  7. Coburn, C.: Play to cure: genes in space. Lancet Oncol. 15(7), 688 (2014)

    Article  Google Scholar 

  8. Diepenbrock, S., Ropinski, T.: From imprecise user input to precise vessel segmentations. In: VCBM. EG, pp. 65–72 (2012)

    Google Scholar 

  9. Donath, A., Kondermann, D.: Is crowdsourcing for optical flow ground truth generation feasible? In: Chen, M., Leibe, B., Neumann, B. (eds.) ICVS 2013. LNCS, vol. 7963, pp. 193–202. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39402-7_20

    Chapter  Google Scholar 

  10. Edmond, E.C., Sim, S.X.-L., Li, H.-H., Tan, E.-K., Chan, L.-L.: Vascular tortuosity in relationship with hypertension and posterior fossa volume in hemifacial spasm. BMC Neurol. 16, 120 (2016)

    Article  Google Scholar 

  11. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998). doi:10.1007/BFb0056195

    Chapter  Google Scholar 

  12. Heng, P.-A., Sun, H., Chen, K.-W., Wong, T.-T.: Interactive navigation of virtual vessel tracking with 3D intelligent scissors. IJIG 1(02), 273–285 (2001)

    Google Scholar 

  13. Hennersperger, C., Baust, M.: Play for me: image segmentation via seamless playsourcing. Comput. Games J. 6(1–2), 1–16 (2017)

    Article  Google Scholar 

  14. Kerschnitzki, M., Kollmannsberger, P., Burghammer, M., Duda, G.N., Weinkamer, R., Wagermaier, W., Fratzl, P.: Architecture of the osteocyte network correlates with bone material quality. JBMR 28(8), 1837–1845 (2013)

    Article  Google Scholar 

  15. Lesage, D., Angelini, E.D., Bloch, I., Funka-Lea, G.: A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. MIA 13(6), 819–845 (2009)

    Google Scholar 

  16. Lo, P., Van Ginneken, B., JosephMReinhardt, T.Y., De Jong, P.A., Irving, B., Fetita, C., Ortner, M., Pinho, R., Sijbers, J., et al.: Extraction of airways from CT (EXACT’09). TMI 31(11), 2093–2107 (2012)

    Google Scholar 

  17. Arranz, A., Frean, J.: Crowdsourcing malaria parasite quantification: an online game for analyzing images of infected thick blood smears. J. Med. Internet Res. 14(6), e167 (2012)

    Article  Google Scholar 

  18. Maier-Hein, L., et al.: Can masses of non-experts train highly accurate image classifiers? In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8674, pp. 438–445. Springer, Cham (2014). doi:10.1007/978-3-319-10470-6_55

    Google Scholar 

  19. Maier-Hein, L., et al.: Crowdsourcing for reference correspondence generation in endoscopic images. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8674, pp. 349–356. Springer, Cham (2014). doi:10.1007/978-3-319-10470-6_44

    Google Scholar 

  20. Marks, P.C., Preda, M., Henderson, T., Liaw, L., Lindner, V., Friesel, R.E., Pinz, I.M.: Interactive 3D analysis of blood vessel trees and collateral vessel volumes in magnetic resonance angiograms in the mouse ischemic hindlimb model. OJMI 7, 19 (2013)

    Google Scholar 

  21. Poon, K., Hamarneh, G., Abugharbieh, R.: Live-vessel: extending livewire for simultaneous extraction of optimal medial and boundary paths in vascular images. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007. LNCS, vol. 4792, pp. 444–451. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75759-7_54

    Chapter  Google Scholar 

  22. Sankaran, S., Grady, L., Taylor, C.A.: Fast computation of hemodynamic sensitivity to lumen segmentation uncertainty. TMI 34(12), 2562–2571 (2015)

    Google Scholar 

  23. Sommer, C., Straehle, C., Koethe, U., Hamprecht, F.A.: Ilastik: Interactive learning and segmentation toolkit. In: ISBI, pp. 230–233. IEEE (2011)

    Google Scholar 

  24. Sotelo, J., Urbina, J., Valverde, I., Tejos, C., Irarráazaval, P., Andia, M.E., Uribe, S., Hurtado, D.E.: 3D quantification of wall shear stress and oscillatory shear index using a finite-element method in 3D CINE PC-MRI data of the thoracic aorta. TMI 35(6), 1475–1487 (2016)

    Google Scholar 

  25. Straka, M., Cervenansky, M., La Cruz, A., Kochl, A., Sramek, M., Groller, E., Fleischmann, D.: Focus & context visualization in CT-angiography. The VesselGlyph. IEEE (2004)

    Google Scholar 

  26. Vickerman, M.B., Keith, P.A., McKay, T.L., Gedeon, D.J., MichikoWatanabe, M.M., Karunamuni, G., Kaiser, P.K., Sears, J.E., Ebrahem, Q., et al.: VESGEN 2D: automated, user-interactive software for quantification and mapping of angiogenic and lymphangiogenic trees and networks. Anat. Rec. 292(3), 320–332 (2009)

    Article  Google Scholar 

  27. Yu, K.-C., Ritman, E.L., Higgins, W.E.: Graphical tools for improved definition of 3D arterial trees. In: Medical Imaging 2004. SPIE, pp. 485–495 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mian Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Huang, M., Hamarneh, G. (2017). SwifTree: Interactive Extraction of 3D Trees Supporting Gaming and Crowdsourcing. In: Cardoso, M., et al. Intravascular Imaging and Computer Assisted Stenting, and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis. LABELS STENT CVII 2017 2017 2017. Lecture Notes in Computer Science(), vol 10552. Springer, Cham. https://doi.org/10.1007/978-3-319-67534-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67534-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67533-6

  • Online ISBN: 978-3-319-67534-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics