Abstract
Analysis of vascular and airway trees of circulatory and respiratory systems is important for many clinical applications. Automatic segmentation of these tree-like structures from 3D data remains an open problem due to their complex branching patterns, geometrical diversity, and pathology. On the other hand, it is challenging to design intuitive interactive methods that are practical to use in 3D for trees with tens or hundreds of branches. We propose SwifTree, an interactive software for tree extraction that supports crowdsourcing and gamification. Our experiments demonstrate that: (i) aggregating the results of multiple SwifTree crowdsourced sessions achieves more accurate segmentation; (ii) using the proposed game-mode reduces time needed to achieve a pre-set tree segmentation accuracy; and (iii) SwifTree outperforms automatic segmentation methods especially with respect to noise robustness.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdoulaev, G., Cadeddu, S., Delussu, G., Donizelli, M., Formaggia, L., Giachetti, A., Gobbetti, E., Leone, A., Manzi, C., Pili, P., et al.: ViVa: the virtual vascular project. IEEE Trans. Inform. Technol. Biomed. 2(4), 268–274 (1998)
Abeysinghe, S.S., Ju, T.: Interactive skeletonization of intensity volumes. Vis. Comput. 25(5–7), 627–635 (2009)
Albarqouni, S., Baur, C., Achilles, F., Belagiannis, V., Demirci, S., Navab, N.: Aggnet: deep learning from crowds for mitosis detection in breast cancer histology images. IEEE Trans. Med. Imaging 35(5), 1313–1321 (2016)
Albarqouni, S., Matl, S., Baust, M., Navab, N., Demirci, S.: Playsourcing: a novel concept for knowledge creation in biomedical research. In: Carneiro, G., et al. (eds.) LABELS/DLMIA -2016. LNCS, vol. 10008, pp. 269–277. Springer, Cham (2016). doi:10.1007/978-3-319-46976-8_28
Cetin, S., Demir, A., Yezzi, A., Degertekin, M., Unal, G.: Vessel tractography using an intensity based tensor model with branch detection. TMI 32(2), 348–363 (2013)
Chávez-Aragón, A., Lee, W.-S., Vyas, A.: A crowdsourcing web platform-hip joint segmentation by non-expert contributors. In: MeMeA, pp. 350–354. IEEE (2013)
Coburn, C.: Play to cure: genes in space. Lancet Oncol. 15(7), 688 (2014)
Diepenbrock, S., Ropinski, T.: From imprecise user input to precise vessel segmentations. In: VCBM. EG, pp. 65–72 (2012)
Donath, A., Kondermann, D.: Is crowdsourcing for optical flow ground truth generation feasible? In: Chen, M., Leibe, B., Neumann, B. (eds.) ICVS 2013. LNCS, vol. 7963, pp. 193–202. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39402-7_20
Edmond, E.C., Sim, S.X.-L., Li, H.-H., Tan, E.-K., Chan, L.-L.: Vascular tortuosity in relationship with hypertension and posterior fossa volume in hemifacial spasm. BMC Neurol. 16, 120 (2016)
Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998). doi:10.1007/BFb0056195
Heng, P.-A., Sun, H., Chen, K.-W., Wong, T.-T.: Interactive navigation of virtual vessel tracking with 3D intelligent scissors. IJIG 1(02), 273–285 (2001)
Hennersperger, C., Baust, M.: Play for me: image segmentation via seamless playsourcing. Comput. Games J. 6(1–2), 1–16 (2017)
Kerschnitzki, M., Kollmannsberger, P., Burghammer, M., Duda, G.N., Weinkamer, R., Wagermaier, W., Fratzl, P.: Architecture of the osteocyte network correlates with bone material quality. JBMR 28(8), 1837–1845 (2013)
Lesage, D., Angelini, E.D., Bloch, I., Funka-Lea, G.: A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. MIA 13(6), 819–845 (2009)
Lo, P., Van Ginneken, B., JosephMReinhardt, T.Y., De Jong, P.A., Irving, B., Fetita, C., Ortner, M., Pinho, R., Sijbers, J., et al.: Extraction of airways from CT (EXACT’09). TMI 31(11), 2093–2107 (2012)
Arranz, A., Frean, J.: Crowdsourcing malaria parasite quantification: an online game for analyzing images of infected thick blood smears. J. Med. Internet Res. 14(6), e167 (2012)
Maier-Hein, L., et al.: Can masses of non-experts train highly accurate image classifiers? In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8674, pp. 438–445. Springer, Cham (2014). doi:10.1007/978-3-319-10470-6_55
Maier-Hein, L., et al.: Crowdsourcing for reference correspondence generation in endoscopic images. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8674, pp. 349–356. Springer, Cham (2014). doi:10.1007/978-3-319-10470-6_44
Marks, P.C., Preda, M., Henderson, T., Liaw, L., Lindner, V., Friesel, R.E., Pinz, I.M.: Interactive 3D analysis of blood vessel trees and collateral vessel volumes in magnetic resonance angiograms in the mouse ischemic hindlimb model. OJMI 7, 19 (2013)
Poon, K., Hamarneh, G., Abugharbieh, R.: Live-vessel: extending livewire for simultaneous extraction of optimal medial and boundary paths in vascular images. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007. LNCS, vol. 4792, pp. 444–451. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75759-7_54
Sankaran, S., Grady, L., Taylor, C.A.: Fast computation of hemodynamic sensitivity to lumen segmentation uncertainty. TMI 34(12), 2562–2571 (2015)
Sommer, C., Straehle, C., Koethe, U., Hamprecht, F.A.: Ilastik: Interactive learning and segmentation toolkit. In: ISBI, pp. 230–233. IEEE (2011)
Sotelo, J., Urbina, J., Valverde, I., Tejos, C., Irarráazaval, P., Andia, M.E., Uribe, S., Hurtado, D.E.: 3D quantification of wall shear stress and oscillatory shear index using a finite-element method in 3D CINE PC-MRI data of the thoracic aorta. TMI 35(6), 1475–1487 (2016)
Straka, M., Cervenansky, M., La Cruz, A., Kochl, A., Sramek, M., Groller, E., Fleischmann, D.: Focus & context visualization in CT-angiography. The VesselGlyph. IEEE (2004)
Vickerman, M.B., Keith, P.A., McKay, T.L., Gedeon, D.J., MichikoWatanabe, M.M., Karunamuni, G., Kaiser, P.K., Sears, J.E., Ebrahem, Q., et al.: VESGEN 2D: automated, user-interactive software for quantification and mapping of angiogenic and lymphangiogenic trees and networks. Anat. Rec. 292(3), 320–332 (2009)
Yu, K.-C., Ritman, E.L., Higgins, W.E.: Graphical tools for improved definition of 3D arterial trees. In: Medical Imaging 2004. SPIE, pp. 485–495 (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Huang, M., Hamarneh, G. (2017). SwifTree: Interactive Extraction of 3D Trees Supporting Gaming and Crowdsourcing. In: Cardoso, M., et al. Intravascular Imaging and Computer Assisted Stenting, and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis. LABELS STENT CVII 2017 2017 2017. Lecture Notes in Computer Science(), vol 10552. Springer, Cham. https://doi.org/10.1007/978-3-319-67534-3_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-67534-3_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67533-6
Online ISBN: 978-3-319-67534-3
eBook Packages: Computer ScienceComputer Science (R0)