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Abstract. It is known that individuals in social networks tend to exhibit homophily

(a.k.a. assortative mixing) in their social ties, which implies that they prefer bonding

with others of their own kind. But what are the reasons for this phenomenon? Is it

that such relations are more convenient and easier to maintain? Or are there also some

more tangible benefits to be gained from this collective behaviour?

The current work takes a game-theoretic perspective on this phenomenon, and studies

the conditions under which different assortative mixing strategies lead to equilibrium in

an evolving social network. We focus on a biased preferential attachment model where

the strategy of each group (e.g., political or social minority) determines the level of

bias of its members toward other group members and non-members. Our first result is

that if the utility function that the group attempts to maximize is the degree centrality

of the group, interpreted as the sum of degrees of the group members in the network,

then the only strategy achieving Nash equilibrium is a perfect homophily, which implies

that cooperation with other groups is harmful to this utility function. A second, and

perhaps more surprising, result is that if a reward for inter-group cooperation is added

to the utility function (e.g., externally enforced by an authority as a regulation), then

there are only two possible equilibria, namely, perfect homophily or perfect heterophily,

and it is possible to characterize their feasibility spaces. Interestingly, these results hold

regardless of the minority-majority ratio in the population.

We believe that these results, as well as the game-theoretic perspective presented herein,

may contribute to a better understanding of the forces that shape the groups and

communities of our society.
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1 Introduction

Homophily (lit. “love of the same”) [15], also known as assortative mixing [17], is a prevalent

and well documented phenomenon in social networks [16]; in making their social ties, people
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often prefer to connect with other individuals of similar characteristics, such as nationality,

race, gender, age, religion, education or profession.

Homophily has many important consequences, both on the structure of the social network

(e.g., the formation of communities) and on the behaviors and opportunities of participants in

it, for example on the welfare of individuals [12] and on the diffusion patterns of information in

the network [13]. It is therefore interesting to explore the reasons for this phenomenon. Clearly,

one natural reason is that relationship with similar individuals may be more convenient and

easier to maintain. But are there also some more tangible benefits to be gained from this

collective behaviour of sub-populations in the network?

To better understand homophily, we take a different perspective on this phenomenon and

study it through a strategic, game-theoretic prism. We investigate the conditions under which

different assortative (and disassortative) mixing strategies lead to equilibrium in an evolving

social network game.

To model the network evolution, we use a variant of the classical preferential attachment

model [3], which incorporates a heterogeneous population and assortative mixing patterns

for the sub-populations. This model, known as biased preferential attachment (BPA) [2],

maintains the “rich get richer” property, but additionally enables different mixing patterns

(including perfect homophily and heterophily) between sub-populations, by using rejection

sampling.

In this paper, we modify this model by turning it into a game. Each sub-population is

represented as a player who can choose its mixing pattern as a strategy. The utility function

(or payoff) of a player is a result of its population’s (expected) properties in the BPA model.

A strategy profile (describing the strategies of both players) attains a Nash equilibrium for the

game if no player can do better by unilaterally changing its own strategy.

Obviously, the result of the game depends on the players’ utility functions. In the current

study we take an initial step and study two natural utility functions. In the first, we consider

the payoff to be the total power of the group, that is, the sum of degrees of all group members.

In this case we prove that there is a unique stable Nash equilibrium which is the perfect

homophily profile, namely, cooperation with other groups is harmful to this utility function.

We stress that while there are other strategy profiles, like the unbaised profile, that guarantee

the same total power to the groups, those profiles do not yield Nash equilibrium.

Since perfect homophily results in complete segregation of the sub-populations, we consider

a second utility function based on a linear combination between the total power of the group

and the number of cross-population links (i.e., the size of the population cut). In particular,

the utility is taken to be γ times the total power of the group plus 1− γ times the population

cut size, for some weight factor 0 ≤ γ ≤ 1. Such a utility can be viewed as a rule (or a law)

imposed by a regulator to encourage cooperation between the two sub-populations. At a first

glance, this utility seems to lead to different Nash equilibria for different γ values. Somewhat

surprisingly, we show that only two possible equilibria may emerge. For γ > 1/2, the perfect

homophily profile is the unique Nash equilibrium, and for γ < 1/2, the heterophily profile is

the unique Nash equilibrium. For γ = 1/2, both profiles yield a Nash equilibrium, but only
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(a) πH - homophily (b) πT - heterophily (c) πU - unbiased

Fig. 1. Examples of the Biased Preferential Attachment (BPA) model with various parameter set-

tings. All examples depict a 200-vertex bi-populated network generated by our BPA model starting

from a single edge connecting a blue and a red vertex and 30% red nodes (with vertex size proportional

to its degree).

the perfect homophily yields a stable equilibrium. (Note, by the way, that all our results are

independent of the ratio r between the sizes of the two sub-populations.)

What may we learn from these results? A first, quite intuitive, lesson is that if the payoff

includes benefits for heterophilic edges, then the game can move away from the perfect ho-

mophily equilibrium. But, within the natural utility function we study, if the game moves away

from the homophily equilibrium, then it must reach a perfect heterophily equilibrium. Both

of these equilibria may appear to be too “radical” from a social capital perspective, which

may find it desirable to maintain some balance in-between the two extremes, i.e., preserve

the internal structure of both sub-populations as well as form significant cross-population

links between the two sub-populations. This leaves us with some interesting follow-up re-

search directions: what ‘mechanism design’ rules can a regulator employ in order to have a

more fine-grained control on the equilibrium? what happens in a system with more than two

sub-populations? how do the equilibria behave? We leave these questions for future work;

we believe that taking the game theoretic perspective on evolving social network models for

heterogenous populations is an important tool in understanding homophily, as shown in this

initial model.

2 Related work

Game theory provides a natural framework for modeling selfish interests and the networks

they generate [1, 19]. While many studies (see [11] for a comprehensive survey) focus on local

network formation games, others (e.g., [7]) model the players as making global structural

decisions. In this paper we define a game that features a mixture of both local and global

characteristics. This situation is close to cooperative games [5], where all the nodes of the

same group have the same payment. However, the key idea of cooperative games is to choose

which coalitions to form, whereas here the partition into groups is predefined.
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In this context, one should distinguish between network formation games [14, 11, 19] and

evolving network games (e.g., [6]). The former involve a fixed set of nodes, with the connections

between them changing over time. In contrast, in the evolving network model used herein, the

nodes and edges are both dynamic, and new nodes join the network as it evolves over time.

Based on the assumption that people have tendency to copy the decisions of other people,

we suggest a network construction process that follows the well known preferential attachment

model [3] with an additional phase to incorporate the mixing parameter [2]. However, related

studies in the economics literature examine different procedures to model the social network

formation. The studies of [8, 10] assume that individuals are randomly paired with other

members of the population and then match assortatively. Another model, presented at [6],

suggests two-phase attachments. The nodes first choose their neighbors with a bias towards

their own type and then make an unbiased choice of neighbors from among the neighbors

of their biased neighbors. While the models of [14, 10] and others assume that a connecting

edge between a pair of nodes is fixed by using bilateral agreement, in our model the matching

choice is somewhat ambiguous. The rejection of a proposed connection can be interpreted as

either decided by one of the parties unilaterally or accepted by a bilateral agreement.

One of the main themes of this paper is studying the homophily phenomenon and its

influence on minority-majority groups. McPherson et al. [16] give an overview of research on

homophily and survey a variety of properties and how they lead to particular patterns in

bonding. While some studies (e.g., [8, 9, 2]) model homophily as ranging over a spectrum

between perfect homophily and unbiased society, we have followed [6] and [10], which also

allow disassortative matching.

Currarini, Jackson and Pin [8] examine friendship patterns in a representative sample of

U.S. high schools and build a model of friendship formation based on empirical data. They

report that all groups are biased towards same-type friendship relative to demographics, but

different homophilic patterns emerge as a function of the group size; while homophily is

essentially absent for groups that comprise very small or very large fractions of their school,

it is significant for groups that comprise a middle-ranged fraction. In [10] it is also claimed

that the majority group has greater tendency to homophily. In contrast, we have presented

independence between the size of the group and the mixing pattern. Namely, the majority-

minority parameter r does not influence the attained equilibria. This inconsistency can be

explained by the different construction of the network ([8] and [10] assume random matching

with biased agreement as mentioned above), or perhaps by the simplicity of our model and

the fact that it involves only two groups.

3 Network and Game Model

Our network model is an extension of the bi-populated biased preferential attachment (BPA)

model [2]. We use this model as the basis to an evolving heterogeneous network game. We

start by describing the network model.
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3.1 Biased Preferential Attachment Model

The biased preferential attachment model2 (BPA) [2] is a bi-populated preferential attachment

model obtained by applying the classical preferential attachment model [3] to a bi-populated

minority-majority network augmented with homophily.

Definition 1 (BPA Model, BPA(n, r, π)). The model describes a bi-populated random

evolving network with red and blue vertices, where n is the total number of nodes, r is the

arrival rate of the red vertices and π is the mixing matrix. Denote the social network at time

t by Gt = (Vt, Et), where Vt and Et, respectively, are the sets of vertices and edges in the

network at time t, and let dt(v) denote the degree of vertex v at time t. The process starts

with an arbitrary initial bi-populated (red-blue) connected network G0 with n0 vertices and

m0 edges. For simplicity we hereafter assume that G0 consists of one blue and one red vertex

connected by an edge, but this assumption can be removed. This initial network evolves in n

time steps as follows. In every time step t, a new vertex v enters the network. The arrival

rate of the red nodes is denoted by 0 < r < 1, i.e., the new vertex v is red with probability r

and blue with probability 1− r.

In the first stage, v selects a tentative neighbor u at random by preferential attachment,

i.e., with probability proportional to u’s degree at time t,

P[u is chosen] = dt(u)/
∑
w∈Vt

dt(w).

The second stage employs a 2 × 2 stochastic mixing matrix, π, composed of the stochastic

homophily vectors of each player, πR, πB, i.e.,

π =

(
πR

πB

)
=

(
ρR 1− ρR

1− ρB ρB

)
.

Letting x ∈ {R, B} be v’s color, the edge (v, u) is inserted into the graph with probability ρx

when u’s color is also x. If the colors differ, then the edge is inserted with probability 1− ρx.

If the edge is rejected (i.e., is not inserted into the graph), then the two-stage procedure is

restarted. This process is repeated until some edge {v, u} has been inserted. Thus in each time

step, one new vertex and one new edge are added to the existing graph.

Note that the mixing matrix π describes the degree of segregation (incorporated by using

rejection sampling) of the system. In particular, using the perfect homophily matrix

πH =

(
HR

HB

)
=

(
1 0

0 1

)
,

all added edges connect vertex pairs of the same color. At the other extreme, using the perfect

heterophily matrix

πT =

(
TR

TB

)
=

(
0 1

1 0

)
,

2 In fact, here we extend the model of [2] to allow heterophily.
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all added edges connect vertex pairs with different color. Similarly, using the unbiased strategy

matrix

πU =

(
UR

UB

)
=

(
.5 .5

.5 .5

)
,

edges are connected independently of the node colors. For intermediate values 0 < ρR, ρB < 1,

the players show a tendency to favor one kind of interaction over another. When ρR, ρB > 0.5,

the players tend to be homophilic, and when ρR, ρB < 0.5, the players tend to be heterophilic.

Figure 1 presents three examples of parameter settings for the BPA model on a 200-vertex

bi-populated social network with r = 0.3 (30% red nodes), using πH, πT and πU.

3.2 Evolving Heterogeneous Network Games

We now define the evolving heterogeneous EH (t, r, π, γ) network game (EH game, for short)

between the two sub-populations. The game is played between two players, the red player R

and the blue player B. (Note that we occasionally use R and B to denote either the color, the

corresponding set of nodes, or the corresponding player. The exact meaning will be clear from

the context.)

Assume r and G0 are given to the players. Each player X ∈ {R, B} can now choose its

strategy vector as a mixing vector πX in the mixing matrix π. Then the network evolves

according the biased preferential attachment model BPA(t, r, π).

Let nt(R) and nt(B), respectively, denote the number of red and blue nodes at time t > 0,

where nt = nt(R) + nt(B) = n0 + t. Denote by dt(R) (respectively, dt(B)) the sum of degrees

of the red (resp., blue) vertices present in the system at time t ≥ 0. Altogether, the number

of edges in the network at time t is mt = m0 + t, where dt(R) + dt(B) = 2mt.

Let C(Gt) denote the cut of the graph Gt defined by the red-blue partition of Vt, i.e., the

set of edges that have one endpoint in R and the other in B. Formally,

C(Gt) = {(u, v) ∈ Et | u ∈ R, v ∈ B} .

Let φ(Gt) = |C(Gt)| denote the size of the cut.

In our game, the payoff of each player is a combination of two quantities: the total power

of its sub-population (namely, its expected sum of degrees), and the expected cut size φ(G).

Observe that these quantities pull in opposite directions, hence they are balanced using a

parameter 0 ≤ γ ≤ 1 that will serve as a weighting factor for the utility function of the

game. The parameter γ can be viewed as set by a regulator to enforce cooperation between

sub-populations. Formally, the payoffs (utilities) of the players R and B at time t are

Uγt (R) = γ
dt(R)

dt
+ (1− γ)

φt
2mt

=
1

dt

(
γdt(R) + (1− γ)φt

)
,

Uγt (B) = γ
dt(B)

dt
+ (1− γ)

φt
2mt

=
1

dt

(
γdt(B) + (1− γ)φt

)
.

A strategy profile π is a Nash equilibrium for the game EH (t, r, π, γ) if no player X ∈
{R, B} can do better by unilaterally changing its own strategy πX. A Nash equilibrium for
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the game EH (t, r, π, γ) is stable if a small change in π for one player leads to a situation

where two conditions hold: (i) the player who did not change has no better strategy in the

new circumstance, and (ii) the player who did change is now playing with a strictly worse

strategy. If both conditions are met, then the player who changed its π will return immediately

to the Nash equilibrium, hence the equilibrium is stable. If condition (i) does not hold (but

condition (ii) does), then the equilibrium is unstable.

4 Degree Maximization Game

Before studying the behavior of the general evolving heterogeneous network game, let us

consider the solution of the game in the basic case where γ = 1 for every t, i.e., each player’s

utility depends only on the expected sum of degrees.

An urn process. The biased preferential attachment BPA(n, r, π) process can also be inter-

preted as a Polya’s urn process, where each new edge added to the graph corresponds to two

new balls added to the urn, one for each endpoint, and the balls are colored by the color of

the corresponding vertices. In this interpretation, a time step of the original evolving network

process corresponds to the arrival of a new ball x (which is red with probability r and blue

with probability 1− r), and in the ensuing procedure, we choose an existing ball y from the

urn uniformly at random; now, if x is of the same (respectively, different) color x ∈ R, B as

y, then with probability ρx (resp., 1 − ρx) we add to the urn both x and a second copy of y

(corresponding to the two endpoints of the added edge), and with probability 1 − ρx (resp.,

ρx) we reject the choice of y and repeat the experiment, i.e., choose another existing ball

y′ from the urn uniformly at random. This is repeated until the choice of y is not rejected.

Hence the arrival of each new ball x results in the addition of exactly two new balls to the

urn, namely, x and a copy of some existing ball y.

The key observation is that to analyze the expected fraction of the red balls in the urn at

time t, there is no need to keep track of the degrees of individual vertices in the corresponding

process of evolving network; the sum of degrees of all red vertices, dt(R), is exactly the number

of red balls in the urn. Noting that exactly two balls join the system in each time step, we

have

dt(R) + dt(B) = dt = 2t+ n0 = 2(t+ 1).

Note that while dt(R) and dt(B) are random variables, dt is not.

Convergence of expectations. Let αt = dt(R)/dt be a random variable denoting the

fraction of red balls in the system at time t. Given the mixing matrix π, we claim that the

process will converge to a ratio of α red balls in the system (as a function of π). More formally,

we claim that, regardless of the starting condition, there exists a limit α = limt→∞ E[αt] .

Lemma 1. E [αt+1 | αt] = αt +
F (αt)− αt

t+ 2
, where

F (x) =
1

2

(
1 +

ρB(−1 + r)(−1 + α)

−α+ ρB(−1 + 2α)
+

rρRα

1− α+ ρR(−1 + 2α)

)
.
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Proof. Given that the new vertex at time t+ 1 is blue, the probability PBB that it attaches to

a blue vertex satisfies

PBB(αt) = (1− αt)ρB + αtρBPBB(αt) + (1− αt)(1− ρB)PBB(αt),

hence

PBB(αt) =
ρB − ρBαt

ρB + αt − 2ρBαt

Similarly, given that the new vertex at time t + 1 is red, the probability PRR that it attaches

to a red vertex satisfies

PRR(αt) = αtρR + αt(1− ρR)PRR(αt) + (1− αt)ρRPRR(αt),

hence

PRR(αt) =
ρRαt

1− αt + ρR(2αt − 1)
.

We later express PBB and PRR as a function of αt, i.e.,

PBB(x) =
ρB − ρBx

ρB + x− 2ρBx
,

PRR(x) =
ρRx

1− x+ ρR(1− 2x)
. (1)

In each step the sum of the degrees increases by 2, so dt+1 = dt+2. We start from an arbitrary

ratio α0 = d0(R)/d0. Let Nt(x) be a random variable denoting the number of new red balls

at time t assuming αt = x. Then

Nt+1(x) =



0, with probability (1− r)PBB(x)

(a blue ball entered and chose a blue ball),

2, with probability rPRR(x)

(a red ball entered and chose a red ball),

1, with the remaining probability

(a blue ball chose a red ball or vice versa),

(2)

and

dt(R) = d0(R) +

t∑
i=1

Nt(αi−1).

We now define Et = E [Nt+1(αt)] and calculate it to be

Et = E [dt+1(R)− dt(R) | αt]

= 1 · ((1− (1− r)PBB(αt)− rPRR(αt)) + 2 · rPRR(αt)

= 1− (1− r)PBB(αt) + rPRR(αt)

= 1− (1− r) ρB − ρBαt
ρB + αt − 2ρBαt

+ r
ρRαt

1− αt + ρR(1− 2αt)

= 2F (αt).

Substituting dt+1(R) = 2(t+ 2)αt+1 and dt(R) = 2(t+ 1)αt and rewriting yields the lemma.

ut
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Lemma 2. The function F (x) has the following properties:

1. F (x) is monotonically increasing.

2. F (x) has exactly one fixed point, α ∈ [0, 1].

3. The image of the unit interval by F (x) is contained in the unit interval:

F ([0, 1]) =
[
r
2 ,

1+r
2

]
⊂ [0, 1].

4. If x < α then x < F (x) < α and if x > α then x > F (x) > α.

Proof. For the first property, observe that

∂F

∂x
=

1

2

(
(−1 + ρB)ρB(−1 + r)

(ρB + x− 2ρBx)2
− r(−1 + ρR)ρR

(−1 + ρR + x− 2ρRx)2

)
> 0 (3)

for every x, ρR, ρB ∈ [0, 1] and r ∈ (0, 1).

For the second property, we define the function G(x) = F (x) − x. The roots of G(x)

correspond to the fixpoints of F (x) so we will show that G(x) has exactly one real root in the

interval [0, 1]. We arrange G(x) as G(x) = Q(x)
W (x) where

W (x) = 2(−x+ ρB(−1 + 2x))(1− x+ ρR(−1 + 2x)).

Since the denominator W (x) is positive for each r, x, ρB, ρR ∈ [0, 1], it is enough to show that

the numerator Q(x) has exactly one real root in the interval [0, 1] as shown in Lemma 3 below.

The third property follows from the fact that the function F (x) is strictly monotonically

increasing and by evaluating the function F (x) for the two extreme values F (0) = r/2, and

F (1) = (1 + r)/2.

Finally, the fourth property follows from the fact that the function is strictly monotonically

increasing, that there is only one fixed point and that F (x) maps [0, 1] inside [0, 1]. ut

Lemma 3. The polynomial

Q(x) = 2(−1 + 2ρB)(−1 + 2ρR)x
3 + (−3 + 7ρB + ρBr + 4ρR − 10ρBρR + rρR − 4ρBrρR)x

2

+(1− 3ρB − 2ρBr − ρR + 3ρBρR + 4ρBrρR)x+ ρBr − ρBrρR

has a unique root in [0, 1].

Proof. In what follows, we employ Sturm’s Theorem (to be explained next) in order to bound

the number of distinct real roots of Q(x).

Consider some degree n polynomial P (x) = anx
n + ... + a1x + a0 over the reals. The

Sturm sequence of P (x) is a sequence of polynomials denoted by p0(x), p1(x), ..., pm(x), where

p0(x) = P (x), p1(x) = dP (x)/dx, and pi(x) = remainder(pi−2(x)/pi−1(x)) for i > 1. This

recursive definition terminates at step m such that remainder(pm−1(x)/pm(x)) = 0. Since

the degree of pi(x) is at most n− i, we conclude that m ≤ n. Define SCp(t) to be the number

of sign changes in the sequence p0(t), p1(t), ..., pm(t). We are now ready to state the following

theorem attributed to Jacques Sturm, 1829 (cf. [4]).
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Theorem 1 (Sturm’s condition). Consider two reals a, b, where a < b and neither of them

is a root of P (x). Then the number of distinct real roots of P (x) in the interval (a, b) is

SCp(a)− SCp(b).

Let’s examine the Sturm sequence of Q in (0, 1) for every ρR, ρB, checking different ρ ranges

as follows.

For ρB ∈ (0, 12 ) and ρR ∈ ( 1
2 , 1): To find the number of roots between 0 and 1, we first

evaluate p0(x), p1(x), p2(x) and p3(x) at x = 1 and get the sequences of signs of the results:

{−,−,−,−}, which contains no sign changes. Evaluating p0(x), p1(x), p2(x) and p3(x) at

x = 0 yields two optional sequences of signs of the results: for 1/2 < ρR < (1 + 2r)/(1 + 4r)

and (−1 + ρR)/(−3 + 3ρR − 2r + 4ρRr) < ρB < 1/2 we get {+,−,−,−}. Otherwise, we get

the sequences of signs {+,+, ∗,−} (where ∗ is + or −). All of the sequences contain one sign

changes, hence, the number of roots of Q between 0 and 1 is 1− 0 = 1 as needed.

For ρB ∈ ( 1
2 , 1) and ρR ∈ (0, 12 ): To find the number of roots between 0 and 1, we evaluate

p0(x), p1(x), p2(x) and p3(x) at x = 0 and get the sequence of signs: {+,−,+,−} which

contains three sign changes. The same procedure for x = 1 gives for 1/2 < ρB < (−3 +

2r)/(−5 + 4r) and (1− ρB)/(5− 7ρB − 2r+ 4ρBr) < ρR < 1/2 the sign sequences: {−,−,+,−}.
Otherwise, we get the sequences {−,+, ∗,−} (where ∗ is + or −) . Since all of these contain

two sign changes, we get that the number of roots of Q between 0 and 1 is 3−2 = 1 as needed.

For ρR, ρB ∈ (0, 12 ) or ρR, ρB ∈ ( 1
2 , 1) we get that Q(1) < 1 and Q(0) > 0. Observe that

Q(x) =∞ when x→∞ and Q(x) = −∞ when x→ −∞. This implies that there are one or

three roots in both intervals (−∞, 0) and (1,∞). Knowing that Q(x) has exactly three roots

concludes the claim that G has exactly one root in [0, 1].

Finally, when either ρR = 1 and 0 ≤ ρB < 1, or ρB = 0 and 0 < ρR < 1, there is a root of M

at x = 0, hence these cases must be dealt with separately. Another special case occurs when

ρR, ρB = 1
2 . For each of these special cases we explicitly solve the equation M(x) = 0 and show

that there is a unique root at (0, 1). Lemma 3 follows. ut

Assume w.l.o.g. that αt < α. By Lemma 2 αt < F (αt) < α, so by Lemma 1 αt <

E [αt+1 | αt] < α. Taking expectations, we get that E[αt] < E[αt+1] < E[α] = α. We have

thus shown that the expected value of αt converges to the fixed point α of F (x). We have

thus established the following.

Theorem 2. Given the rate r of red nodes and the mixing matrix π, for any initial graph,

as t tends to infinity, the expected fraction of red balls, E[αt], converges to the unique real

α ∈ (0, 1) satisfying the equation F (α) = α, or

2α = 1 +
ρB(−1 + r)(−1 + α)

−α+ ρB(−1 + 2α)
+

rρRα

1− α+ ρR(−1 + 2α)
.

Hence the limit α is the solution of the cubic equation

(2− 4ρB − 4ρR + 8ρBρR)α
3 + (−3 + 7ρB + ρBr + 4ρR − 10ρBρR + rρR − 4ρBrρR)α

2

+ (1− 3ρB − 2ρBr − ρR + 3ρBρR + 4ρBrρR)α+ ρBr − ρBrρR = 0.
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Note that this limit is independent of the initial values d0 and α0 of the system.

Existence of a Nash Equilibrium. Having shown that for any given strategy profile π the

expected fraction of red node degrees converges to α, we examine the influence of the different

strategies on the utility functions.

Lemma 4. The limit α and E[αt] are monotone in the mixing matrix entries, i.e., both in-

crease with increasing ρR and decrease with increasing ρB.

Proof. We show (strict) monotonicity in ρR; a similar proof can be obtained for ρB. Consider

two urn processes Ψ and Ψ ′ corresponding to the games BPA(n,G0, r, π) and BPA(n,G0, r, π
′),

where

π =

(
ρR 1− ρR

1− ρB ρB

)
and π′ =

(
ρR + ε′ 1− (ρR + ε′)

1− ρB ρB

)

for some ε′ > 0. Denote by αt = dt(R)
dt

and α′t =
d′t(R)
dt

the fraction of red balls at time t in Ψ

and Ψ ′ respectively. Let α = limt→∞ E[αt] and α′ = limt→∞ E[α′t].

In order to prove the first part of the lemma (i.e., the claim on the limit α) we show that

α < α′. Let F (x) and F ′(x) be the functions defined for the process Ψ and Ψ ′ respectively.

Observe that ∂F/∂ρR > 0 for each ρ, r ∈ [0, 1] and x ∈ (0, 1), so F (x) < F ′(x) for every

x ∈ (0, 1). Note that F (α) = α and F ′(α′) = α′ are the unique fixed points of F (x) and

F ′(x), respectively, hence α = F (α) < F ′(α′) = α′ as required.

The proof of the second part of the lemma (i.e., the claim on E[αt]) uses stochastic domi-

nation (see cf. [18]). We give the formal definition and a basic theorem that we use.

Definition 2 (Stochastic domination). Let X and Y be two random variables, not neces-

sarily on the same probability space. The random variable X is stochastically smaller than Y ,

denoted X � Y , if P[X > z] ≤ P[Y > z] for every z ∈ R. If additionally P[X > z] < P[Y > Z]

for some z, then X is stochastically strictly less than Y , denoted X ≺ Y .

Theorem 3 (stochastic order). Let X and Y be two random variables, not necessarily on

the same probability space.

1. Suppose X ≺ Y . Then E[U(X)] < E[U(Y )] for any strictly increasing continuous utility

function U .

2. Suppose X1 ≺ Y1 and X2 ≺ Y2, for four random variables X1, Y1, X2 and Y2. Then

aX1 + bY1 ≺ aX2 + bY2 for any two constants a, b > 0.

Let Nt+1(x) (respectively, N′t+1(x)) be a random variable denoting the number of new red

balls at time t+ 1 in Ψ (resp., Ψ ′) assuming αt = x (resp., α′t = x).

Lemma 5. Nt+1(x) ≺ N′t+1(x) for any 0 < x < 1 and integer t ≥ 0.
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Proof. By Eq. (1) and (2),

P[Nt+1(x) = 0] = P[N′t+1(x) = 0],

P[Nt+1(x) = 2] < P[N′t+1(x) = 2].

Hence P[Nt+1(x) > z] ≤ P[N′t+1(x) > z] for every z ∈ R and P[N1(α0) > 1] < P[N′1(α0) > 1],

yielding Nt+1(x) ≺ N′t+1(x). ut

Lemma 6. For t ≥ 0, if αt ≺ α′t then Nt+1(αt) ≺ N′t+1(α′t).

Proof. We would like to show that for every z,

P[Nt+1(αt) > z] ≤ P[N′t+1(α′t) > z].

Denoting expectation according to the r.v. Z by EZ [·], we have

P[Nt+1(αt) > z] = Eαt
[P[Nt+1(αt) > z]] ≤ Eαt

[
P[N′t+1(αt) > z]

]
≤ Eα′

t

[
P[N′t+1(α′t) > z]

]
= P[N′t+1(α′t) > z],

where the first inequality follows from Lemma 5, which shows that Nt+1(x) � N′t+1(x), and

the second is by Theorem 3(1), noting that P[N′t+1(x) > z] is monotone in x.

To show strictness (i.e., Nt+1(αt) ≺ N′t+1(α′t)) we consider z = 1 and show that

P[Nt+1(αt) > 1] < P[N′t+1(α′t) > 1]. ut

Lemma 7. αt ≺ α′t for t ≥ 0.

Proof. Note that

dt(R) = d0(R) +

t∑
i=1

Ni(αi−1),

d′t(R) = d′0(R) +

t∑
i=1

N′i(α
′
i−1).

We prove the claim by induction, over t.

Induction basis. d0(R) = d′0(R) = cR for some constant cR > 0. Then α0 = cR
d0

= α′0. It follows

that

P[N1(α0) = 0] =
(1− r)ρB(α0 − 1)

ρB(α0 − 1)− (1− ρB)α0
= P[N′1(α′0) = 0]

and

P[N1(α0) = 2] =
rρRα0

(1− ρR)(1− α0) + ρRα0
<

r(ρR + ε)α0

(1− ρR)(1− α0) + (ρR + ε)α0
= P[N′1(α′0) = 2],

hence P[N1(α0) > z] ≤ P[N1(α′0) > z] for every z ∈ R and P[N1(α0) > 1] < P[N1(α′0) > 1],

yielding N1(α0) ≺ N′1(α′0).

Induction step. Suppose that αt ≺ α′t holds. By Lemma 6, Nt+1(αt) ≺ N′t+1(α′t). Hence

dt+1(R) = dt(R) + Nt+1(αt) ≺ d′t(R) + N′t+1(α′t) = dt+1(R),

where dt(R) ≺ d′t(R) by the induction assumption. Note we also used Theorem 3(2). This

implies αt+1 ≺ α′t+1 as needed. ut
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By Theorem 3 we get E[αt] < E[α′t], which complete the proof of the second part of Lemma

4. ut

Given the utility functions U1
t (R) = dt(R) and U1

t (B) = dt(B), each player can choose its row

in the mixing matrix π. By Theorem 2 we get that U1
t→∞(R) = dtα and U1

t→∞(B) = dt(1−α).

Lemma 4 implies that the red and blue players maximize their utility by increasing ρR and ρB,

respectively. Hence, the homophily strategy profile πH is strictly dominant for both players.

The same applies for t <∞.

Theorem 4. The homophily strategy profile πH is a unique Nash equilibrium for the game

EH (t, r, π, γ = 1).

5 Utilitiy Maximization Game

The evolving heterogeneous network game EH (t, r, π, γ) for a bi-populated network consists

of two contrasting ingredients, the expected sum of degrees d(·) and the cut size φ(G). The

following theorem expresses the impact of these forces on the system as a function of the

weighting factor γ.

Theorem 5. Consider the evolving network game EH (t, r, π, γ) for 0 < r < 1.

1. For γ > 1/2, the homophily strategy profile πH is a unique Nash equilibrium.

2. For γ < 1/2, the heterophily strategy profile πT is a unique Nash equilibrium.

3. For γ = 1/2, the only two Nash equilibria are πH and πT. The homophily strategy profile πH

is a stable Nash equilibrium, while the heterophily strategy profile πT is an unstable Nash

equilibrium.

Proof. Let Mt(x) be a random variable denoting the number of new cut edges at time t. We

have

Mt+1(x) =

0, with probability (1− r)PBB(x) + rPRR(x),

1, with the remaining probability,

and

φ(Gt) = φ(G0) +

t∑
i=1

Mi(αi−1).

Define the potential function of the red player, denoted ∆R, as the expected increment of its

utility at step t. Then

∆R = E
[
Uγt+1(R)− Uγt (R) | α

]
= γNt+1(α) + (1− γ)Mt+1(α)

= γ(1− (1− r)PBB(α) + rPRR(α)) + (1− γ)(1− ((1− r)PBB(α) + rPRR(α)))

= 1− (1− r)PBB(α) + r(2γ − 1)PRR(α) .
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Similar considerations imply that the potential function of the blue player is:

∆B = 1− rPRR(α) + (1− r)(2γ − 1)PBB(α).

Let’s examine the value of the potential functions ∆R and ∆B for every γ, checking different

γ ranges as follows.

γ > 1/2: In this range the value of PRR contributes positively to ∆R and negatively to ∆B.

Hence, the red player would like to increase PRR. This would be done by increasing ρR as shown

in Lemma 8. Similarly, in this range PBB contributes positively to ∆B and negatively to ∆R.

Hence, the blue player prefers to increase ρB. It follows that the homophily strategies HR and

HB are strictly dominant for both players.

Note that this result also holds for the special case where γ = 1, as shown in Theorem 4.

γ < 1/2: Here, both PRR and PBB provide negative contributions to ∆R and ∆B. Therefore,

decreasing ρR implies decreasing PRR but also increasing PBB (see Lemma 8). The variation

of PBB is due to the influence of ρR on 1 − α, which is similar to the variation of PRR due

to α. However, PRR is also decreased directly by ρR, hence the red player prefers to decrease

ρR. Similarly, the blue player would like to decrease ρB, which implies that the heterophily

strategies TR and TB are strictly dominant.

Note that this result also holds for the special case where γ = 0. In this case, the utility is

based only on the cut G(φ), so it is clear that the best strategy for both players is to attach

to a node of the opposite color as dictated by the heterophily strategy.

γ = 1/2: In this range the potential function value is

∆R = (1− (1− r)PBB) =

(
1− (1− r) ρB(1− α)

ρB(1− α) + α(1− ρB)

)
.

Although the strategy of the red player, ρR, does not appear explicitly in this expression, it

appears implicitly in α. Setting ρR = 0 implies PBB = 0, yielding ∆R = 1. Similarly, setting

ρB = 0 yields ∆B = 1. Since 1 is the maximum value of ∆R and ∆B, it follows that the

heterophily strategies are dominant for both players, i.e., πT is a Nash equilibrium.

However, as in the case of γ > 1/2, when ρB > 0 the red player would minimize α by

increasing ρR as shown in Lemma 4. Similarly, when ρR > 0 the blue player would increase ρB.

This leads both players to the homophily strategies HR and HB. Thus, πT is an unstable Nash

equilibrium and πH is a stable Nash equilibrium. ut

Lemma 8. PRR and PBB are monotone in the entries of the mixing matrix:

– PRR increases with increasing ρR and decreases with increasing ρB, and

– PBB increases with increasing ρB and decreases with increasing ρR.

Proof. Observing that ∂PRR

∂ρR
> 0 and ∂PRR

∂α > 0, and using Lemma 4, yields the first part of the

claim. Similarly, ∂PBB

∂ρB
> 0 and ∂PBB

∂α < 0 yield the second part. ut
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6 Discussion

This work investigates the assortative mixing phenomenon using a game theory perspective.

Given some predefined rules related to the probability of connecting to other node, each player

is allowed to determine its strategy in order to maximize its payoff. First we used a utility

function that captures degree centrality, and showed that the expected sum of degrees and its

limit are monotonically increasing with the homophily tendency. This directly implies that

the homophily strategy is the unique Nash equilibrium. In this context, it will be interesting

to use different centrality measures (such as PageRank, betweenness, etc.) and examine their

influence on the equilibria. Next we enhanced the utility function to give positive payoff for

both the degree and the cut. The results we have presented show a phase transition in the

strategy as a function the weight γ. A small fluctuation in γ might cause extreme changes

in the preference of the players, i.e., from perfect homophily to perfect heterophily (or vice

versa); the intermediate strategies are never in equilibrium. This result is independent of the

fraction of the sub-population size in the population. Generalizing the model to more than

two sub-populations or reformulating the utility function may shape the strategy function

differently.

An interesting outcome of the above is the possibility that setting a rule (or a law) by a

regulator to encourage cooperation between the two sub-populations will play as a remedial

strategy to achieve equal opportunities. This observation is remarkable since, in contrast to

the usual affirmative action approach, this attitude does not discriminate any individual, but

at the same time, it promises a fair representation of the different sub-populations and even

a way for breaking the glass ceiling [2] that some minority sub-populations suffer from. We

leave this direction for further work.
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13. M. O. Jackson and D. López-Pintado. Diffusion and contagion in networks with heterogeneous

agents and homophily. Network Science, 1(01):49–67, 2013.

14. M. O. Jackson and A. Watts. The evolution of social and economic networks. Journal of Economic

Theory, 106(2):265–295, 2002.

15. P. F. Lazarsfeld, R. K. Merton, et al. Friendship as a social process: A substantive and method-

ological analysis. Freedom and control in modern society, 18(1):18–66, 1954.

16. M. McPherson, L. Smith-Lovin, and J. M. Cook. Birds of a feather: Homophily in social networks.

Annual review of sociology, pages 415–444, 2001.

17. M. E. J. Newman. Mixing patterns in networks. Phys. Rev. E, 67:026126, Feb 2003.

18. M. Shaked and J. G. Shanthikumar. Stochastic orders. Springer Science & Business Media, 2007.

19. E. Tardos and T. Wexler. Network formation games and the potential function method. Algo-

rithmic Game Theory, pages 487–516, 2007.


	Assortative Mixing Equilibria in Social Network Games
	Hadassa Daltrophe

