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Abstract

The effect of Type 2 Diabetes (T2D) on brain health is poorly understood. This study aims to 

quantify the association between T2D and perfusion in the brain. T2D is a very common metabolic 

disorder that can cause long term damage to the renal and cardiovascular systems. Previous 

research has discovered the shape, volume and white matter microstructures in the brain to be 

significantly impacted by T2D. We propose a fully-connected deep neural network to classify the 

regional Cerebral Blood Flow into low or high levels, given 16 clinical measures as predictors. The 

clinical measures include diabetes, renal, cardiovascular and demographics measures. Our model 

enables us to discover any nonlinear association which might exist between the input features and 

target. Moreover, our end-to-end architecture automatically learns the most relevant features and 

combines them without the need for applying a feature selection method. We achieved promising 

classification performance. Furthermore, in comparison with six (6) classical machine learning 

algorithms and six (6) alternative deep neural networks similarly tuned for the task, our proposed 

model outperformed all of them.

1 Introduction

More than 29 million people (9.3%) in the United States have diabetes [2]. In adults, Type 2 

Diabetes (T2D) accounts for 95% of all diagnosed cases of diabetes. T2D is a metabolic 

disorder characterized by high blood sugar caused by insulin resistance or relative lack of 

insulin. It has been shown that prolonged T2D can result in chronic kidney disease (CKD), 

cardiovascular disease (CVD) and diabetic retinopathy. Since the brain consumes a 

disproportionately large amount of the body’s energy relative to its overall mass, it is 

reasonable to suspect that diabetes may impact brain health. Currently the effect of T2D on 

brain health has been under-studied. Understanding these effects will help unravel this 

complex disease and enable a more comprehensive evaluation of candidate new therapies.
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Initial studies on T2D patients have found that diabetes [3,11] and renal [9,14] disease 

measures are associated with volumes of certain neuroanatomical structures, however the 

relationship between diabetes and the perfusion of the brain parenchyma has remained 

largely unknown. Additionally, according to the U.S. Center for Disease Control, African 

American adults are about twice as likely to be diagnosed with diabetes as European 

Americans [2]. Thus in this study we aim to identify the association between diabetes-

related disease measures and regional brain perfusion in African Americans.

Several studies have linked diabetes to structural alterations in the brain. Sink et al. [14] 

found significant associations between renal measures and hippocampal white matter 

volume in African Americans with diabetic kidney disease, including the urine albumin to 

creatinine ratio (UACR) and the estimated glomerular filtration rate (GFR). Freedman et al. 

[3] reported an inverse association between aorta calcified plaque (a CVD measure) and the 

gray matter volume of hippocampus in African Americans with T2D. In a study using 

Diffusion Tensor Imaging (DTI), Hsu et al. [4] found that diabetes duration is significantly 

associated with white matter microstructure measures, such as mean diffusivity in several 

brain regions including bilateral cerebellum, temporal lobe, bilateral cingulate gyrus, pons, 

parahippocampal gyrus and right caudate.

Given that these studies have shown an association between diabetes and brain structure, we 

hypothesize that T2D also alters brain perfusion. This paper tests our hypothesis. Our main 

contributions are threefold. First, a massive univariate linear analysis approach is performed 

to identify candidate regions meeting the most stringent multiple comparisons correction 

criteria. Second, a fully-connected Deep Neural Network (DNN) architecture for predicting 

brain perfusion level is proposed which automatically learns optimal feature combinations 

and characterizes the T2D to perfusion association including any nonlinearities. Third, 

permutation testing is conducted to access the reliability of proposed model’s accuracy via 

the notion of statistical significance.

2 Materials

This cross-sectional study consisted of 152 African Americans with T2D. Laboratory tests 

were conducted to acquire measures of diabetes as well as related renal and cardiovascular 

disease measures. The diabetes measures included hemoglobin A1c (HbA1c) and diabetes 

duration. Renal disease measures included UACR, GFR, blood urea nitrogen (BUN), serum 

potassium, total serum protein, and urine microalbumin. Blood based measures of 

cardiovascular disease and inflammation included calcified atherosclerotic plaque in the 

coronary arteries (CAC) and C-reactive protein (CRP). Demographic measures obtained 

included gender (56.8% female), age (mean 59.2 years), body mass index, smoking status, 

and hypertension. These measures are summarized in Table 1.

Anatomical and perfusion MRI were acquired for every subject using a 3.0 Tesla Siemens 

Skyra MRI (Siemens Healthcare, Erlangen, Germany) with a high-resolution 20-channel 

head/neck coil. T1-weighted anatomic images were acquired using a 3D volumetric 

magnetization-prepared rapid acquisition gradient echo sequence (Repetition time [TR] 
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2,300 ms; echo time [TE] 2.02 ms; inversion time [TI] 900 ms; flip angle [FA] 9°; 192 

slices; voxel dimensions 0.97 × 0.97 × 1 mm3). Eight phase pseudo-Continuous Arterial 

Spin Labeling (pCASL) perfusion images were acquired with repetition time [TR] 4,000 ms; 

echo time [TE] 12 ms; inversion time [TI] 3000 ms; flip angle [FA] 90°; 26 slices/49 

volumes; voxel dimensions 3.4 × 3.4 × 5 mm3.

3 Methods

Our overall pipeline consists of these steps: (1) derivation of the mean Cerebral Blood Flow 

(CBF) per brain region, (2) identification of candidate brain regions via statistical analysis, 

and (3) fitting a DNN to quantify the association between the candidate region’s CBF and 

diabetes measures. Each step is detailed below.

3.1 Compute Mean Gray Matter CBF per Anatomical Region

CBF volumes were computed from pCASL perfusion images in native space. To parcellate 

the CBF maps into regional measures, each subject’s pCASL volume was co-registered to 

the same subject’s T1-weighted image using affine transformation. Then each subject’s T1-

weighted image was spatially normalized to Montreal Neurological Institute (MNI) space 

using a non-linear transform [1] computed using the VBM8 toolbox1. These transforms 

were combined to spatially normalize the CBF maps into MNI space. The automated 

anatomical labeling (AAL) atlas [15], implemented in WFU PickAtlas [7] was used to 

parcellate the CBF map into 116 anatomical regions. A gray matter mask from VBM8 

segmentation was applied to limit to the gray matter CBF voxels. Finally, the mean gray 

matter CBF of the voxels in each region was computed to form a vector containing the 116 

mean regional CBF measures.

3.2 Identify candidate regions for further analysis

At this point the data consisted of 16 diabetes related predictors and 116 candidate regional 

CBF target measures. To prune the list of candidate regions a massive univariate approach 

was applied to the 152 subject cohort. In this approach 116 multiple linear regression 

models, each defined as y = b0+b1×1+b2×2+ … +b16×16 was fitted, where y is one of the 

regional CBF measures and xi are the clinical measures. For each model, the coefficient of 

determination or R2 score was computed to measure the goodness of fit while the probability 

of F-statistic, p(F-statistic), was computed to measure the significance of the regression 

model. Bonferroni multiple comparisons correction was applied, yielding a criterion for 

significance of α = 0.01/116 = 0.000086.

Figure 1 shows the regions, sorted based on decreasing R2 from the linear model fit to each 

region. The p(F-statistic) is also shown. 17 structures pass the significance test, p(F-statistic) 

< 0.000086. The most significant region is the right caudate with p(F-statistic) = 1.16e − 07 

and R2 = 0.36. This agrees with the finding in [4] of an association between diabetes 

duration and mean diffusivity in right caudate, discussed in Sect. 1. This analysis reveals the 

1http://dbm.neuro.uni-jena.de/vbm.html.

Saghafi et al. Page 3

Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2017). Author manuscript; available in PMC 2019 October 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dbm.neuro.uni-jena.de/vbm.html


caudate as one of the structures significantly impacted by T2D, therefore in the following 

section we train a DNN to predict caudate CBF level from diabetes measures in order to 

quantify the association.

3.3 Estimate Candidate Region Association Using a DNN

Subjects were ranked based on the perfusion of the CBF in the right caudate, then the top 

30% and bottom 30% samples were considered for classification. This resulted in 92 

subjects: 46 with low and 46 with high CBF. Categorical features including education, sex, 

hypertension and amount of smoking were converted into numerical features. Each feature 

was scaled between zero and one. Several fully connected, DNN model architectures were 

evaluated to classify the caudate perfusion level. In each tested architecture, a strategy 

similar to the fully connected layers in AlexNet [6] and VGGNet [13], was chosen where the 

number of neurons is reduced in each successive hidden layer until the output layer. This 

allows a gradual build-up of a more and more abstract, high level features from lower level 

features. The rectified linear unit which is defined as ReLU(z) = max(0, z) was applied as 

the activation function for each hidden layer neuron. A categorical output layer consisting of 

a single neuron per category was implemented via the softmax activation function defined as 

S j z = ez j

∑k = 1
2 ezk

; j = 1, 2. During training a batch size of 10 and learning rate of 0.001 was 

chosen based on empirical evidence. The ADAM optimization method [5] was used with β1 

= 0.5, β2 = 0.999, and ϵ = 1e − 08 and weights were initialized to small random values near 

zero. In each validation test, early stopping with look ahead was employed, i.e. training was 

stopped when the network showed no improvement in validation accuracy for 15 epochs. To 

perform model selection, 72 subjects were randomly selected from the 92 to use as the 

training set while the remaining 20 subjects were held out as the test set and not used during 

model selection. Both training and test sets were balanced. The training set was further 

divided into training and validation via 5-fold cross-validation. The evaluated models and 

their average cross validation accuracy is shown in Table 2. These models include less deep 

architectures which underfit (model 16-8-2) and very deep architectures which overfit 

(model 16-16-8-8-8-4-4-4-2). The winning architecture and the DNN model that we propose 

is further illustrated in Fig. 2. The model contains 5 dense hidden layers, where 16 neurons 

were used in the first hidden layer, 8 neurons in the second and third and 4 neurons in the 

fourth and fifth layers. After selecting the proposed architecture, it was trained on the full 

training set and evaluated on the unseen held-out test set.

4 Results

4.1 Performance Comparison of the Learning Models

The proposed model achieves an accuracy of 90% with a sensitivity of 100% and specificity 

of 80%. Table 3 shows a comparison of the performance of the proposed model to widely 

used classical machine learning classifiers. The proposed DNN model outperforms the other 

algorithms in nearly all performance metrics. While the random forest had slightly higher 

specificity, it yielded inferior F1 score, AUC, accuracy, and sensitivity.
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4.2 Statistical Significance of the Proposed Model

The null hypothesis was that the DNN cannot learn to predict the perfusion level based on 

the training set. The test statistic chosen was the accuracy on the unseen test set of 20 

samples. The permutation testing procedure was as follows:

1. Repeat R = 1000 times:

a. Randomly permute the N perfusion measures over the N diabetes 

feature vectors.

b. Compute the value of the test statistic for the current permutation.

2. Construct an empirical probability distribution function (PDF) of the test 

statistic.

3. Compute the p-value of the test static without permutation.

The PDF for the accuracy test statistics are shown in Fig. 3. Upon evaluation the proposed 

model achieved statistically significant reliability; the probability of observing a classifier 

with higher accuracy than the proposed model is <1% (p = 0.000999). Thus with a 

significance level of α = 0.01, we reject the null hypothesis in factor of the alternative 

hypothesis that the model has learned to predict the perfusion level with small expected 

error.

5 Discussion

Our study found the caudate to be the structure whose blood perfusion is most impacted by 

diabetes. This is a noteworthy finding because the caudate is a structure vital for optimum 

brain health. The caudate is located within the dorsal striatum of the basal ganglia, and is 

associated with motor processes as well as cognitive functions including procedural learning 

and associative learning [8]. It is also one of the structures comprising the reward system 

[16].

Previous studies [4,10,12,17] have shown that the structure of the caudate nucleus, 

particularly the right caudate is significantly impacted by T2D. Peng et al. [10] reported a 

significant reduction of gray matter volume in the caudate in patients with T2D compared to 

normal controls. A similar study in pediatric population [12] showed caudate nucleus 

volume was significantly reduced in T2D patients compared to non-diabetic controls. Zhang 

et al. [17] found an association between higher plasma glucose (common in diabetics) and 

the shape of the caudate. Moreover, Hsu et al. [4] discovered a significant association 

between diabetes duration and white matter microstructural properties such as mean 

diffusivity in several brain regions including the right caudate. These complementary studies 

that associate caudate structural changes with T2D, corroborate our finding that T2D 

impacts blood perfusion in the caudate nucleus.
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6 Conclusions

In this paper, we quantify the association between T2D-related measures and brain 

perfusion. We propose a fully connected deep neural network to classify the perfusion in 

caudate into low and high categories based on 16 diabetes, renal, cardiovascular and 

demographic measures. The proposed model outperforms all the deep learning and classical 

machine learning models tested, achieves a classification accuracy of 90%, 100% sensitivity, 

and 80% specificity, and permutation testing shows the model to have statistically significant 

reliability.
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Fig. 1. 
Fitting 116 multivariable univariate linear models for prediction of perfusion in each AAL 

ROI from the 16 clinical features. The structures are ranked based on the model’s R2. Also 

the p(F-statistic) is shown in red. The green horizontal line indicates the significance 

threshold based on Bonferroni correction which has a height of α = 0.000086. The 

significant regions are highlighted in green.
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Fig. 2. 
Our proposed fully-connected deep neural network for the classification of caudate CBF into 

perfusion level based on clinical measures. Green neurons represent the input layer, while 

blue neurons constitute the hidden layers and red neurons are the output neurons which use 

softmax activation function to compute a categorical distribution.

Saghafi et al. Page 9

Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2017). Author manuscript; available in PMC 2019 October 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Probability distribution function (PDF) from permutation analysis for the proposed DNN 

model. The red line indicates the classification accuracy obtained by the model.
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Table 1.

Diabetes and demographic measures included in the study.

Diabetes measures Demographic measures

UACR (mg/g) 83.7 (284.2) Age (years) 59.2 (9.4)

CRP (mg/dL) 0.9 (1.5) Female Sex (%) 56.8

HbA1c (%) 8.0 (1.8) Education (%)

Diabetes duration (years) 8.9 (7.5)  Less than High School 9.0

CAC (mass score, mg) 475.4 (1142.2)  High school diploma 23.9

GFR (mL/min/1.73 m2) 90.6 (23.5)  Some college 39.4

Serum Potassium (mmol/L) 4.1 (0.4)  Associate degree 7.7

Total Serum Protein (g/dL) 7.2 (0.5)  College graduate 11.6

BUN (mg/dL) 15.6 (5.8)  After college 8.4

Urine Microalbumin (mcg/mg creatinine) 110.2 (344.0) BMI (kg/m2) 34.1 (7.2)

Smoking

 Never (%) 52.3

 Past smoker (%) 28.8

 Current smoker (%) 18.9

Hypertension (%) 86.4
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Table 2.

Comparison of fully connected neural network architectures evaluated using 5-fold cross validation with 58 

training subjects/fold and 14 test subjects/fold.

Model 5-fold cross-validation accuracy (%)

16-8-2 69.1 (±8.1)

16-16-8-2 75.9 (±14.9)

16-16-8-8-2 69.3 (±11.0)

16-16-8-8-4-2 74.8 (±8.9)

16-16-8-8-4-4-2 76.3 (±9.9)

16-16-8-8-4-4-4-2 70.5 (±6.2)

16-16-8-8-8-4-4-4-2 65.0 (±9.7)
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Table 3.

Comparison of the performance of different classifiers on the held out test set. Each model is trained on 72 

subjects and tested on 20 subjects.

Classifier Accuracy (%) Sensitivity (%) Specificity (%) AUC (%) F1-score (%)

proposed DNN 90.0 100.0 80.0 90.0 90.9

Linear-SVM 80.0 90.0 70.0 80.0 81.8

RBF-SVM 80.0 90.0 70.0 80.0 81.8

Extra Trees 80.0 90.0 70.0 80.0 81.8

Random Forest 85.0 80.0 90.0 85.0 84.2

Adaboost 80.0 90.0 70.0 80.0 81.8

Gradboost 70.0 80.0 60.0 70.0 72.7
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