Skip to main content

Accelerated Magnetic Resonance Imaging by Adversarial Neural Network

  • Conference paper
  • First Online:
Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support (DLMIA 2017, ML-CDS 2017)

Abstract

A main challenge in Magnetic Resonance Imaging (MRI) for clinical applications is speeding up scan time. Beyond the improvement of patient experience and the reduction of operational costs, faster scans are essential for time-sensitive imaging, where target movement is unavoidable, yet must be significantly lessened, e.g., fetal MRI, cardiac cine, and lungs imaging. Moreover, short scan time can enhance temporal resolution in dynamic scans, such as functional MRI or dynamic contrast enhanced MRI. Current imaging methods facilitate MRI acquisition at the price of lower spatial resolution and costly hardware solutions.

We introduce a practical, software-only framework, based on deep learning, for accelerating MRI scan time allows maintaining good quality imaging. This is accomplished by partial MRI sampling, while using an adversarial neural network to estimate the missing samples. The inter-play between the generator and the discriminator networks enables the introduction of an adversarial cost in addition to a fidelity loss used for optimizing the peak signal-to-noise ratio (PSNR). Promising image reconstruction results are obtained for 1.5T MRI where only 52% of the original data are used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhatia, K.K., Caballero, J., Price, A.N., Sun, Y., Hajnal, J.V., Rueckert, D.: Fast reconstruction of accelerated dynamic MRI using manifold kernel regression. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 510–518. Springer, Cham (2015). doi:10.1007/978-3-319-24574-4_61

    Chapter  Google Scholar 

  2. Caballero, J., Price, A.N., Rueckert, D., Hajnal, J.V.: Dictionary learning and time sparsity for dynamic MR data reconstruction. IEEE Trans. Med. Imaging 33(4), 979–994 (2014)

    Article  Google Scholar 

  3. Deshmane, A., Gulani, V., Griswold, M.A., Seiberlich, N.: Parallel MR imaging. J. Magn. Reson. Imaging 36(1), 55–72 (2012)

    Article  Google Scholar 

  4. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: AISTATS, vol. 9, pp. 249–256 (2010)

    Google Scholar 

  6. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  7. Griswold, M.A., Jakob, P.M., Heidemann, R.M., Nittka, M., Jellus, V., Wang, J., Kiefer, B., Haase, A.: Generalized Autocalibrating Partially Parallel Acquisitions (GRAPPA). Magn. Reson. Med. 47(6), 1202–1210 (2002)

    Article  Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  10. Moeller, S., Yacoub, E., Olman, C.A., Auerbach, E., Strupp, J., Harel, N., Uğurbil, K.: Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI. Magn. Reson. Med. 63(5), 1144–1153 (2010)

    Article  Google Scholar 

  11. Nie, D., Trullo, R., Petitjean, C., Ruan, S., Shen, D.: Medical image synthesis with context-aware generative adversarial networks. arXiv preprint arXiv:1612.05362 (2016)

  12. Oktay, O., et al.: Multi-input cardiac image super-resolution using convolutional neural networks. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 246–254. Springer, Cham (2016). doi:10.1007/978-3-319-46726-9_29

    Chapter  Google Scholar 

  13. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2536–2544 (2016)

    Google Scholar 

  14. Pruessmann, K.P., Weiger, M., Scheidegger, M.B., Boesiger, P., et al.: Sense: sensitivity encoding for fast MRI. Magn. Reson. Med. 42(5), 952–962 (1999)

    Article  Google Scholar 

  15. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

  16. Ravishankar, S., Bresler, Y.: MR image reconstruction from highly undersampled k-space data by dictionary learning. IEEE Trans. Med. Imaging 30(5), 1028–1041 (2011)

    Article  Google Scholar 

  17. Roemer, P.B., Edelstein, W.A., Hayes, C.E., Souza, S.P., Mueller, O.: The NMR phased array. Magn. Reson. Med. 16(2), 192–225 (1990)

    Article  Google Scholar 

  18. Usman, M., Vaillant, G., Atkinson, D., Schaeffter, T., Prieto, C.: Compressive manifold learning: estimating one-dimensional respiratory motion directly from undersampled k-space data. Magn. Reson. Med. 72(4), 1130–1140 (2014)

    Article  Google Scholar 

  19. Wang, S., Su, Z., Ying, L., Peng, X., Zhu, S., Liang, F., Feng, D., Liang, D.: Accelerating magnetic resonance imaging via deep learning. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 514–517. IEEE (2016)

    Google Scholar 

Download references

Acknowledgment

This research is partially supported by the Israel Science Foundation (T.R.R. 1638/16) and the IDF Medical Corps (T.R.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ohad Shitrit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Shitrit, O., Riklin Raviv, T. (2017). Accelerated Magnetic Resonance Imaging by Adversarial Neural Network. In: Cardoso, M., et al. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support . DLMIA ML-CDS 2017 2017. Lecture Notes in Computer Science(), vol 10553. Springer, Cham. https://doi.org/10.1007/978-3-319-67558-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67558-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67557-2

  • Online ISBN: 978-3-319-67558-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics