Abstract
The cervical spine is a flexible anatomy and vulnerable to injury, which may go unnoticed during a radiological exam. Towards building an automatic injury detection system, we propose a localization framework for the cervical spine in X-ray images. The proposed framework employs a segmentation approach to solve the localization problem. As the cervical spine is a single connected component, we introduce a novel region-aware loss function for training a deep segmentation network that penalises disjoint predictions. Using data augmentation, the framework has been trained on a dataset of 124 images and tested on another 124 images, all collected from real life medical emergency rooms. The results show a significant improvement in performance over the previous state-of-the-art cervical vertebrae localization framework.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Platzer, P., Hauswirth, N., Jaindl, M., Chatwani, S., Vecsei, V., Gaebler, C.: Delayed or missed diagnosis of cervical spine injuries. J. Trauma Acute Care Surg. 61(1), 150–155 (2006)
Morris, C., McCoy, E.: Clearing the cervical spine in unconscious polytrauma victims, balancing risks and effective screening. Anaesthesia 59(5), 464–482 (2004)
Tezmol, A., Sari-Sarraf, H., Mitra, S., Long, R., Gururajan, A.: Customized Hough transform for Robust segmentation of cervical vertebrae from X-ray images. In: Proceedings of Fifth IEEE Southwest Symposium on Image Analysis and Interpretation, pp. 224–228. IEEE (2002)
Larhmam, M.A., Mahmoudi, S., Benjelloun, M.: Semi-automatic detection of cervical vertebrae in X-ray images using generalized Hough transform. In: 2012 3rd International Conference on Image Processing Theory, Tools and Applications (IPTA), pp. 396–401. IEEE (2012)
Glocker, B., Feulner, J., Criminisi, A., Haynor, D.R., Konukoglu, E.: Automatic localization and identification of vertebrae in arbitrary field-of-view CT scans. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7512, pp. 590–598. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33454-2_73
Glocker, B., Zikic, D., Konukoglu, E., Haynor, D.R., Criminisi, A.: Vertebrae localization in pathological spine CT via dense classification from sparse annotations. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 262–270. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40763-5_33
Al Arif, S.M.M.R., Gundry, M., Knapp, K., Slabaugh, G.: Global localization and orientation of the cervical spine in X-ray images. In: Yao, J., Vrtovec, T., Zheng, G., Frangi, A., Glocker, B., Li, S. (eds.) CSI 2016. LNCS, vol. 10182, pp. 3–15. Springer, Cham (2016). doi:10.1007/978-3-319-55050-3_1
Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2016)
Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1520–1528 (2015)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). doi:10.1007/978-3-319-24574-4_28
Ruder, S.: An overview of gradient descent optimization algorithms, arXiv preprint arXiv:1609.04747 (2016)
NHANES-II Dataset. https://ceb.nlm.nih.gov/proj/ftp/ftp.php. Accessed 19 Feb 2017
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Al Arif, S.M.M.R., Knapp, K., Slabaugh, G. (2017). Region-Aware Deep Localization Framework for Cervical Vertebrae in X-Ray Images. In: Cardoso, M., et al. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support . DLMIA ML-CDS 2017 2017. Lecture Notes in Computer Science(), vol 10553. Springer, Cham. https://doi.org/10.1007/978-3-319-67558-9_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-67558-9_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67557-2
Online ISBN: 978-3-319-67558-9
eBook Packages: Computer ScienceComputer Science (R0)