Abstract
Cardiac MRI allows for the acquisition of high resolution images of the heart. Long acquisition times of MRI make it impractical to image the full heart in 3D at high resolution. As a result, multiple 2D images are commonly acquired with a slice thickness greater than the in-plane resolution. One way of achieving isotropic high-resolution images is to apply post-processing techniques such as super-resolution to produce high resolution images from low resolution input. We use short-axis stacks as well as orthogonal long-axis views in a super-resolution framework, constraining the reconstruction using the contrast independent directional total variation algorithm to produce a high resolution 3D reconstruction with isotropic resolution. The 3D reconstruction retains the contrast of the short-axis stack, but incorporates the edge information from both the short-axis and the long-axis stacks. Results show improved reconstructions, with a segmentation voxel misclassification rate of 3.51% as opposed to 4.27% using linear interpolation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bogaert, J., Dymarkowski, S., Taylor, A.M.: Clinical Cardiac MRI. Taylor & Francis US (2005)
Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)
Caballero, J., Price, A.N., Rueckert, D., Hajnal, J.V.: Dictionary learning and time sparsity for dynamic MR data reconstruction. IEEE Trans. Med. Imaging 33(4), 979–94 (2014)
Greenspan, H., Oz, G., Kiryati, N., Peled, S.: MRI inter-slice reconstruction using super-resolution. Magn. Reson. Imaging 20(5), 437–446 (2002)
Van Reeth, E., Tham, I.: Superresolution in magnetic resonance imaging: a review. Concepts Magn. Reson. Part A 40A(6), 306–325 (2012)
Woo, J., Murano, E., Stone, M., Prince, J.: Reconstruction of high resolution tongue volumes from MRI. IEEE Trans. Biomed. Eng. 59(12), 1–1 (2012)
Poot, D.H.J., Meir, V., Sijbers, J.: General and efficient super-resolution method for multi-slice MRI. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 615–622. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15705-9_75
Plenge, E., Poot, D.H.J., Bernsen, M., Kotek, G., Houston, G., Wielopolski, P., Van Der Weerd, L., Niessen, W.J., Meijering, E.: Super-resolution methods in MRI: can they improve the trade-off between resolution, signal-to-noise ratio, and acquisition time? Magn. Reson. Med. 68(6), 1983–1993 (2012)
Khmelinskii, A., Plenge, E., Kok, P., Dzyubachyk, O., Poot, D.H.J., Suidgeest, E., Botha, C.P., Niessen, W.J., van der Weerd, L., Meijering, E., et al.: Super-resolution reconstruction of whole-body MRI mouse data: an interactive approach. In: 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp. 1723–1726. IEEE (2012)
Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)
Joshi, S.H., Marquina, A., Osher, S.J., Dinov, I., Van Horn, J.D., Toga, A.W.: MRI resolution enhancement using total variation regularization. In: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2009, pp. 161–164. IEEE (2009)
Ehrhardt, M.J., Betcke, M.M.: Multicontrast MRI reconstruction with structure-guided total variation. SIAM J. Imaging Sci. 9(3), 1084–1106 (2016)
Odille, F., Bustin, A., Chen, B., Vuissoz, P.-A., Felblinger, J.: Motion-corrected, super-resolution reconstruction for high-resolution 3D cardiac cine MRI. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 435–442. Springer, Cham (2015). doi:10.1007/978-3-319-24574-4_52
Oktay, O., et al.: Multi-input cardiac image super-resolution using convolutional neural networks. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 246–254. Springer, Cham (2016). doi:10.1007/978-3-319-46726-9_29
Shewchuk, J.R.: An introduction to the conjugate gradient method without the agonizing pain (1994)
Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). doi:10.1007/978-3-319-10593-2_13
Oktay, O., Ferrante, E., Kamnitsas, K., Heinrich, M., Bai, W., Caballero, J., Guerrero, R., Cook, S., de Marvao, A., O’Regan, D., et al.: Anatomically constrained neural networks (ACNN): application to cardiac image enhancement and segmentation. arXiv preprint arXiv:1705.08302 (2017)
Acknowledgments
NMB acknowledges the support of the RCUK Digital Economy Programme grant number EP/G036861/1 (Oxford Centre for Doctoral Training in Healthcare Innovation). This work was supported by the British Heart Foundation (BHF) [grant numbers PG/13/33/30210, RG/13/8/30266, FS/11/50/29038 and NH/13/30238], the Engineering and Physical Sciences Research Council [grant number EP/J013250/1], and the BHF Centre for Research Excellence [grant number RE/13/1/30181. The authors acknowledge a Wellcome Trust Core Award [grant number 090532/Z/09/Z].
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Basty, N., McClymont, D., Teh, I., Schneider, J.E., Grau, V. (2017). Reconstruction of 3D Cardiac MR Images from 2D Slices Using Directional Total Variation. In: Cardoso, M., et al. Molecular Imaging, Reconstruction and Analysis of Moving Body Organs, and Stroke Imaging and Treatment. RAMBO CMMI SWITCH 2017 2017 2017. Lecture Notes in Computer Science(), vol 10555. Springer, Cham. https://doi.org/10.1007/978-3-319-67564-0_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-67564-0_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67563-3
Online ISBN: 978-3-319-67564-0
eBook Packages: Computer ScienceComputer Science (R0)