Skip to main content

An Efficient Multi-resolution Reconstruction Scheme with Motion Compensation for 5D Free-Breathing Whole-Heart MRI

  • Conference paper
  • First Online:
Molecular Imaging, Reconstruction and Analysis of Moving Body Organs, and Stroke Imaging and Treatment (RAMBO 2017, CMMI 2017, SWITCH 2017)

Abstract

In this work, we propose a novel approach for the reconstruction of 3D isotropic, free-breathing cardiac cine MRI with 100% data efficiency. The main components are a continuous 3D Golden radial k-space data acquisition, a robust groupwise cardio-respiratory motion estimation technique and a multiresolution strategy introduced in a previously proposed compressed sensing reconstruction scheme. Initial results on simulated data show better reconstruction quality than the non-motion compensated counterpart and reduced reconstruction times with respect to a single-resolution procedure for equivalent acceleration factors ranging 24.38 to 34.8.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asif, M.S., Hamilton, L., Brummer, M., Romberg, J.: Motion-adaptive spatio-temporal regularization for accelerated dynamic MRI. Magn. Reson. Med. 70(3), 800–812 (2013)

    Article  Google Scholar 

  2. Becker, S., Bobin, J., Candes, E.J.: Nesta: a fast and accurate first-order method for sparse recovery. SIAM J. Imaging Sci. 4(1), 1–39 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chun, S.Y., Fessler, J.A.: A simple regularizer for b-spline nonrigid image registration that encourages local invertibility. IEEE J. Sel. Top. Sig. Process. 3(1), 159–169 (2009)

    Article  Google Scholar 

  4. Feng, L., et al.: Synchronized cardiac and respiratory sparsity for rapid free-breathing cardiac cine MRI. J. Cardiovasc. Magn. Reson. 16(1), W26 (2014)

    Article  Google Scholar 

  5. Feng, L., et al.: Xd-grasp: golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing. Magn. Reson. Med. 75(2), 775–788 (2016)

    Article  Google Scholar 

  6. Feng, L., et al.: 5D whole-heart sparse MRI. Magn. Reson. Med. 1–13 (2017)

    Google Scholar 

  7. Jung, H., et al.: k-t focuss: a general compressed sensing framework for high resolution dynamic MRI. Magn. Reson. Med. 61(1), 103–116 (2009)

    Article  Google Scholar 

  8. Jung, H., Ye, J.C.: Motion estimated and compensated compressed sensing dynamic magnetic resonance imaging: what we can learn from video compression techniques. Int. J. Imaging Syst. Technol. 20(2), 81–98 (2010)

    Article  Google Scholar 

  9. Leclaire, A., Moisan, L.: No-reference image quality assessment and blind deblurring with sharpness metrics exploiting fourier phase information. J. Math. Imaging and Vis. 52(1), 145–172 (2015). http://dx.doi.org/10.1007/s10851-015-0560-5

    Article  MathSciNet  MATH  Google Scholar 

  10. Piccini, D., Littmann, A., Nielles-Vallespin, S., Zenge, M.O.: Spiral phyllotaxis: the natural way to construct a 3D radial trajectory in MRI. Magn. Reson. Med. 66(4), 1049–1056 (2011). http://dx.doi.org/10.1002/mrm.22898

    Article  Google Scholar 

  11. Prieto, C., et al.: Reconstruction of undersampled dynamic images by modeling the motion of object elements. Magn. Reson. Med. 57(5), 939–949 (2007)

    Article  Google Scholar 

  12. Pruessmann, K.P., Weiger, M., Scheidegger, M.B., Boesiger, P.: Sense: sensitivity encoding for fast MRI. Magn. Reson. Med. 42(5), 952–962 (1999)

    Article  Google Scholar 

  13. Segars, W.P., Sturgeon, G., Mendonca, S., Grimes, J., Tsui, B.M.W.: 4d xcat phantom for multimodality imaging research. Med. Phys. 37(9), 4902–4915 (2010)

    Article  Google Scholar 

  14. Usman, M., et al.: Motion corrected compressed sensing for free-breathing dynamic cardiac MRI. Magn. Reson. Med. 70(2), 504–516 (2013)

    Article  Google Scholar 

  15. Royuela-del Val, J., et al.: Single breath hold whole heart cine MRI with iterative groupwise cardiac motion compensation and sparse regularization (kt-wise). In: Proceedings of the International Society for Magnetic Resonance in Medicine 23 (2015)

    Google Scholar 

  16. Royuela-del Val, J., et al.: Nonrigid groupwise registration for motion estimation and compensation in compressed sensing reconstruction of breath-hold cardiac cine mri. Magn. Reson. Med. 75(4), 1525–1536 (2016)

    Article  Google Scholar 

  17. Royuela-del Val, J., et al.: Jacobian weighted temporal total variation for motion compensated compressed sensing reconstruction of dynamic MRI. Magn. Reson. Med. 77(3), 1208–1215 (2017)

    Article  Google Scholar 

  18. Wissmann, L., et al.: Mrxcat: realistic numerical phantoms for cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 16(1), 63 (2014)

    Article  Google Scholar 

Download references

Acknowledgement

This work is partially supported by the Spanish Ministerio de Economía, Industria y Competitividad (MINECO) and by the Junta de Castilla y León through grants TEC201457428R and VA069U16, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa-María Menchón-Lara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Menchón-Lara, RM. et al. (2017). An Efficient Multi-resolution Reconstruction Scheme with Motion Compensation for 5D Free-Breathing Whole-Heart MRI. In: Cardoso, M., et al. Molecular Imaging, Reconstruction and Analysis of Moving Body Organs, and Stroke Imaging and Treatment. RAMBO CMMI SWITCH 2017 2017 2017. Lecture Notes in Computer Science(), vol 10555. Springer, Cham. https://doi.org/10.1007/978-3-319-67564-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67564-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67563-3

  • Online ISBN: 978-3-319-67564-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics