Skip to main content

Automated Ventricular System Segmentation in CT Images of Deformed Brains Due to Ischemic and Subarachnoid Hemorrhagic Stroke

  • Conference paper
  • First Online:
Molecular Imaging, Reconstruction and Analysis of Moving Body Organs, and Stroke Imaging and Treatment (RAMBO 2017, CMMI 2017, SWITCH 2017)

Abstract

Accurate ventricle segmentation is important for reliable automated infarct localization, detection of early ischemic changes, and localization of hemorrhages. The purpose of this study was to develop a robust and accurate ventricle segmentation method in image data of ischemic and hemorrhagic stroke patients. Early follow-up non-contrast CT image data of 35 patients with a clinical diagnosis of ischemic stroke or subarachnoid hemorrhage were collected. We proposed a ventricle segmentation method based on a combination of active contours and an atlas-based segmentation. Ground truth was obtained by manual delineation of the ventricles by 4 observers with corrections by 2 experienced radiologists. Accuracy of the automated method was evaluated by calculation of the intraclass correlation coefficients, Dice coefficients, and by Bland-Altman analysis. The intraclass correlation coefficient for the automated method compared with the reference standard was excellent (0.93). The Dice coefficients was 0.79 [IQR: 0.72–0.84]. Bland-Altman analysis showed a mean difference of 2 mL between the automatic and manual measurements, with broad limits of agreement ranging from −18 to 15 mL. The automated ventricle segmentation showed an excellent correlation and high accuracy compared to the manual reference measurement. This approach is suitable for reliable ventricle segmentation even in stroke patients with a severely deformed brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Towfighi, A., Saver, J.L.: Stroke declines from third to fourth leading cause of death in the United States: historical perspective and challenges ahead. Stroke 42, 2351–2355 (2011). doi:10.1161/STROKEAHA.111.621904

    Article  Google Scholar 

  2. Boers, A.M., Marquering, H.A., Jochem, J.J., et al.: Automated cerebral infarct volume measurement in follow-up noncontrast CT scans of patients with acute ischemic stroke. Am. J Neuroradiol. 34, 1522–1527 (2013). doi:10.3174/ajnr.A3463

    Article  Google Scholar 

  3. Boers, A.M., Zijlstra, I.A., Gathier, C.S., et al.: Automatic quantification of subarachnoid hemorrhage on noncontrast CT. Am. J. Neuroradiol. 35, 2279–2286 (2014). doi:10.3174/ajnr.A4042

    Article  Google Scholar 

  4. Stoel, B.C., Marquering, H.A., Staring, M., et al.: Automated brain CT densitometry of early ischemic changes in acute stroke. AJNR Am. J. Neuroradiol. (2013). doi:10.1117/1.JMI.2.1.014004

  5. Schnack, H.G., Hulshoff Pol, H.E., Baaré, W.F.C., et al.: Automatic segmentation of the ventricular system from MR images of the human brain. Neuroimage 14, 95–104 (2001). doi:10.1006/nimg.2001.080

    Article  Google Scholar 

  6. Xia, Y., Hu, Q., Aziz, A., Nowinski, W.L.: A knowledge-driven algorithm for a rapid and automatic extraction of the human cerebral ventricular system from MR neuroimages. Neuroimage 21, 269–282 (2004). doi:10.1016/j.neuroimage.2003.09.029

    Article  Google Scholar 

  7. Schönmeyer, R., Prvulovic, D., Rotarska-Jagiela, A., et al.: Automated segmentation of lateral ventricles from human and primate magnetic resonance images using cognition network technology. Magn. Reson. Imaging 24, 1377–1387 (2006). doi:10.1016/j.mri.2006.08.013

    Article  Google Scholar 

  8. Chen, W., Smith, R., Ji, S.-Y., et al.: Automated ventricular systems segmentation in brain CT images by combining low-level segmentation and high-level template matching. BMC Med. Inform. Decis. Mak. 9, S4 (2009). doi:10.1186/1472-6947-9-S1-S4

    Article  Google Scholar 

  9. Fan, Y., Jiang, T., Evans, D.J.: Volumetric segmentation of brain images using parallel genetic algorithms. IEEE Trans. Med. Imaging 21, 904–909 (2002). doi:10.1109/TMI.2002.803126

    Article  Google Scholar 

  10. Liu, J., Huang, S., Ihar, V., et al.: Automatic model-guided segmentation of the human brain ventricular system from CT images. Acad. Radiol. 17, 718–726 (2010). doi:10.1016/j.acra.2010.02.013

    Article  Google Scholar 

  11. Etyngier, P., Ségonne, F., Keriven, R.: Active-contour-based image segmentation using machine learning techniques. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007. LNCS, vol. 4791, pp. 891–899. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75757-3_108

    Chapter  Google Scholar 

  12. Poh, L.E., Gupta, V., Johnson, A., et al.: Automatic segmentation of ventricular cerebrospinal fluid from ischemic stroke CT images. Neuroinformatics 10, 159–172 (2012). doi:10.1007/s12021-011-9135-9

    Article  Google Scholar 

  13. Qian, X., Lin, Y., Zhao, Y., et al.: Objective ventricle segmentation in brain CT with ischemic stroke based on anatomical knowledge. Biomed. Res. Int. 2017, 1–11 (2017). doi:10.1155/2017/8690892

    Article  Google Scholar 

  14. Berkhemer, O., Fransen, P., Beumer, D., et al.: A randomized trial of intraarterial treatment for acute ischemic stroke. New. Engl. J. Med. 372, 11–20 (2014). doi:10.1056/NEJMoa1411587

    Article  Google Scholar 

  15. Lankton, S., Tannenbaum, A.: Localizing region-based active contours. IEEE Trans. Image Process. 17, 2029–2039 (2008). doi:10.1109/TIP.2008.2004611

    Article  MathSciNet  Google Scholar 

  16. Klein, S., Staring, M., Murphy, K., et al.: Elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29, 196–205 (2010)

    Article  Google Scholar 

  17. Shamonin, D.P., Bron, E.E., Lelieveldt, B.P.F., et al.: Fast parallel image registration on CPU and GPU for diagnostic classification of Alzheimer’s disease. Front. Neuroinform. 7, 50 (2013)

    Article  Google Scholar 

  18. Pang, J.: Localized Active Contour (2014). http://uk.mathworks.com/matlabcentral/fileexchange/44906-localized-active-contour

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ferdian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ferdian, E. et al. (2017). Automated Ventricular System Segmentation in CT Images of Deformed Brains Due to Ischemic and Subarachnoid Hemorrhagic Stroke. In: Cardoso, M., et al. Molecular Imaging, Reconstruction and Analysis of Moving Body Organs, and Stroke Imaging and Treatment. RAMBO CMMI SWITCH 2017 2017 2017. Lecture Notes in Computer Science(), vol 10555. Springer, Cham. https://doi.org/10.1007/978-3-319-67564-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67564-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67563-3

  • Online ISBN: 978-3-319-67564-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics