Skip to main content

Mass Transportation for Deformable Image Registration with Application to Lung CT

  • Conference paper
  • First Online:
Molecular Imaging, Reconstruction and Analysis of Moving Body Organs, and Stroke Imaging and Treatment (RAMBO 2017, CMMI 2017, SWITCH 2017)

Abstract

Computed Tomography (CT) of the lungs play a key role in clinical investigation of thoracic malignancies, as well as having the potential to increase our knowledge about pulmonary diseases including cancer. It enables longitudinal trials to monitor lung disease progression, and to inform assessment of lung damage resulting from radiation therapy. We present a novel deformable image registration method that accommodates changes in the density of lung tissue depending on the amount of air present in the lungs inspiration/expiration state. We investigate the Monge-Kantorovich theory of optimal mass transportation to model the appearance of lung tissue and apply it in a method for registration. To validate the model, we apply our method to an inhale and exhale lung CT data set, and compare it against registration using the sum of squared differences (SSD) as a representative of the most popular similarity measures used in deformable image registration. The results show that the developed registration method has the potential to handle intensity distortions caused by air and tissue compression, and in addition it can provide accurate annotations of the lungs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arsigny, V., Commowick, O., Pennec, X., Ayache, N.: A log-euclidean framework for statistics on diffeomorphisms. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 924–931. Springer, Heidelberg (2006). doi:10.1007/11866565_113

    Chapter  Google Scholar 

  2. Castillo, R., Castillo, E., Guerra, R., Johnson, V., McPhail, T., Garg, A., Guerrero, T.: A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets. Phys. Med. Biol. 54, 1849–1870 (2009)

    Article  Google Scholar 

  3. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  4. Cremers, D., Rousson, M., Deriche, R.: A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape. Int. J. Comput. Vision 72(2), 195–215 (2007)

    Article  Google Scholar 

  5. Dawson, L.A., Jaffray, D.A.: Advances in image-guided radiation therapy. J. Clin. Oncol. 25(8), 938–946 (2007)

    Article  Google Scholar 

  6. Durrleman, S., Pennec, X., Trouvé, A., Braga, J., Gerig, G., Ayache, N.: Toward a comprehensive framework for the spatiotemporal statistical analysis of longitudinal shape data. Int. J. Comput. Vision 103(1), 22–59 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gorbunova, V., Sporring, J., Lo, P., Loeve, M., Tiddens, H.A., Nielsen, M., Dirksen, A., de Bruijne, M.: Mass preserving image registration for lung CT. Med. Image Anal. 16(4), 786–795 (2012)

    Article  Google Scholar 

  8. Gorthi, S., Duay, V., Bresson, X., Cuadra, M., Castro, F.S., Pollo, C., Allal, A., Thiran, J.-P.: Active deformation fields: dense deformation field estimation for atlas-based segmentation using the active contour framework. Med. Image Anal. 15(6), 787–800 (2011)

    Article  Google Scholar 

  9. Haker, S., Zhu, L., Tannenbaum, A., Angenent, S.: Optimal mass transport for registration and warping. Int. J. Comput. Vision 60(3), 225–240 (2004)

    Article  Google Scholar 

  10. Hodneland, E., Hanson, E., Lundervold, A., Modersitzki, J., Eikefjord, E., Munthe-Kaas, A.: Segmentation-driven image registration-application to 4D DCE-MRI recordings of the moving kidneys. IEEE Trans. Image Process (2014)

    Google Scholar 

  11. Murphy, K., Van Ginneken, B., Reinhardt, J.M., Kabus, S., Ding, K., Deng, X., Cao, K., Du, K., Christensen, G.E., Garcia, V., et al.: Evaluation of registration methods on thoracic CT: the EMPIRE10 challenge. IEEE Trans. Med. Imaging 30(11), 1901–1920 (2011)

    Article  Google Scholar 

  12. Ni, K., Bresson, X., Chan, T.F., Esedoglu, S.: Local histogram based segmentation using the Wasserstein distance. Int. J. Comput. Vision 84, 97–111 (2009)

    Article  Google Scholar 

  13. Porikli, F.M.: Integral histogram: a fast way to extract histograms in cartesian spaces. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 829–836. IEEE (2005)

    Google Scholar 

  14. Rubner, Y., Tomasi, C., Leonidas, J.G.: The earth movers distance as a metric for image retrieval. Int. J. Comput. Vision 40, 99–121 (2000)

    Article  MATH  Google Scholar 

  15. Świerczyński, P., Papież, B.W., Schnabel, J.A., Macdonald, C.: A level-set approach to joint image segmentation and registration with application to CT lung imaging. Comput. Med. Imaging Graph. (2017, in press)

    Google Scholar 

  16. Vandemeulebroucke, J., Bernard, O., Rit, S., Kybic, J., Clarysse, P., Sarrut, D.: Automated segmentation of a motion mask to preserve sliding motion in deformable registration of thoracic CT. Med. Phys. 39, 1006 (2012)

    Article  Google Scholar 

  17. Vemuri, B.C., Ye, J., Chen, Y., Leonard, C.M.: Image registration via level-set motion: applications to atlas-based segmentation. Med. Image Anal. 7, 1–20 (2003)

    Article  Google Scholar 

  18. Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons: efficient non-parametric image registration. Neuroimage 45, S61–S72 (2009)

    Article  Google Scholar 

  19. Yezzi, A., Zöllei, L., Kapur, T.: A variational framework for integrating segmentation and registration through active contours. Med. Image Anal. 7, 171–18 (2003)

    Article  Google Scholar 

  20. Yin, Y., Hoffman, E.A., Lin, C.-L.: Mass preserving nonrigid registration of CT lung images using cubic B-spline. Med. Phys. 36(9), 4213–4222 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge funding from the CRUK/ EPSRC Cancer Imaging Centre in Oxford.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartłomiej W. Papież .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Papież, B.W., Brady, S.M., Schnabel, J.A. (2017). Mass Transportation for Deformable Image Registration with Application to Lung CT. In: Cardoso, M., et al. Molecular Imaging, Reconstruction and Analysis of Moving Body Organs, and Stroke Imaging and Treatment. RAMBO CMMI SWITCH 2017 2017 2017. Lecture Notes in Computer Science(), vol 10555. Springer, Cham. https://doi.org/10.1007/978-3-319-67564-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67564-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67563-3

  • Online ISBN: 978-3-319-67564-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics