Skip to main content

Towards Statistical Reasoning in Description Logics over Finite Domains

  • Conference paper
  • First Online:
Scalable Uncertainty Management (SUM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10564))

Included in the following conference series:

  • 680 Accesses

Abstract

We present a probabilistic extension of the description logic \(\mathcal {ALC}\) for reasoning about statistical knowledge. We consider conditional statements over proportions of the domain and are interested in the probabilistic-logical consequences of these proportions. After introducing some general reasoning problems and analyzing their properties, we present first algorithms and complexity results for reasoning in some fragments of Statistical \(\mathcal {ALC}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baader, F., Brandt, S., Lutz, C.: Pushing the \(\cal{EL}\) envelope. In: Kaelbling, L.P., Saffiotti, A. (eds.) Proceedings of IJCAI 2005, pp. 364–369. Morgan-Kaufmann (2005)

    Google Scholar 

  2. Beierle, C., Kern-Isberner, G., Finthammer, M., Potyka, N.: Extending and completing probabilistic knowledge and beliefs without bias. KI-Künstliche Intelligenz 29(3), 255–262 (2015)

    Article  Google Scholar 

  3. Ceylan, İ.İ., Peñaloza, R.: The bayesian ontology language \(\cal{BEL.}\) J. Autom. Reasoning 58(1), 67–95 (2017)

    Google Scholar 

  4. Grove, A.J., Halpern, J.Y., Koller, D.: Random worlds and maximum entropy. In: Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science, 1992, LICS 1992, pp. 22–33. IEEE (1992)

    Google Scholar 

  5. Halpern, J.Y.: An analysis of first-order logics of probability. Artif. Intell. 46(3), 311–350 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hansen, P., Jaumard, B.: Probabilistic satisfiability. In: Kohlas, J., Moral, S. (eds.) Handbook of Defeasible Reasoning and Uncertainty Management Systems, vol. 5, pp. 321–367. Springer, Netherlands (2000)

    Chapter  Google Scholar 

  7. Klinov, P., Parsia, B.: Pronto: a practical probabilistic description logic reasoner. In: Bobillo, F., Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) UniDL/URSW 2008-2010. LNCS, vol. 7123, pp. 59–79. Springer, Heidelberg (2013). doi:10.1007/978-3-642-35975-0_4

    Chapter  Google Scholar 

  8. Koller, D., Levy, A., Pfeffer, A.: P-classic: a tractable probablistic description logic. AAAI/IAAI 1997, 390–397 (1997)

    Google Scholar 

  9. Lukasiewicz, T.: Probabilistic logic programming with conditional constraints. ACM Trans. Comput. Logic 2(3), 289–339 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description logics for the semantic web. JWS 6(4), 291–308 (2008)

    Article  Google Scholar 

  11. Lutz, C., Schröder, L.: Probabilistic description logics for subjective uncertainty. In: Proceedings of KR 2010. AAAI Press (2010)

    Google Scholar 

  12. Niepert, M., Noessner, J., Stuckenschmidt, H.: Log-linear description logics. In: IJCAI, pp. 2153–2158 (2011)

    Google Scholar 

  13. Nilsson, N.J.: Probabilistic logic. Artif. Intell. 28, 71–88 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Paris, J.B.: The Uncertain Reasoner’s Companion - A Mathematical Perspective. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  15. Peñaloza, R., Potyka, N.: Probabilistic reasoning in the description logic \(\cal{ALCP}\) with the principle of maximum entropy. In: Schockaert, S., Senellart, P. (eds.) SUM 2016. LNCS, vol. 9858, pp. 246–259. Springer, Cham (2016). doi:10.1007/978-3-319-45856-4_17

    Chapter  Google Scholar 

  16. Peñaloza, R., Potyka, N.: Towards statistical reasoning in description logics over finite domains (full version). CoRR abs/1706.03207 (2017). http://arxiv.org/abs/1706.03207

  17. Potyka, N., Thimm, M.: Probabilistic reasoning with inconsistent beliefs using inconsistency measures. In: IJCAI, pp. 3156–3163 (2015)

    Google Scholar 

  18. Riguzzi, F., Bellodi, E., Lamma, E., Zese, R.: Probabilistic description logics under the distribution semantics. Semant. Web 6(5), 477–501 (2015)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Peñaloza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Peñaloza, R., Potyka, N. (2017). Towards Statistical Reasoning in Description Logics over Finite Domains. In: Moral, S., Pivert, O., Sánchez, D., Marín, N. (eds) Scalable Uncertainty Management. SUM 2017. Lecture Notes in Computer Science(), vol 10564. Springer, Cham. https://doi.org/10.1007/978-3-319-67582-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67582-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67581-7

  • Online ISBN: 978-3-319-67582-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics