Abstract
We present a probabilistic extension of the description logic \(\mathcal {ALC}\) for reasoning about statistical knowledge. We consider conditional statements over proportions of the domain and are interested in the probabilistic-logical consequences of these proportions. After introducing some general reasoning problems and analyzing their properties, we present first algorithms and complexity results for reasoning in some fragments of Statistical \(\mathcal {ALC}\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baader, F., Brandt, S., Lutz, C.: Pushing the \(\cal{EL}\) envelope. In: Kaelbling, L.P., Saffiotti, A. (eds.) Proceedings of IJCAI 2005, pp. 364–369. Morgan-Kaufmann (2005)
Beierle, C., Kern-Isberner, G., Finthammer, M., Potyka, N.: Extending and completing probabilistic knowledge and beliefs without bias. KI-Künstliche Intelligenz 29(3), 255–262 (2015)
Ceylan, İ.İ., Peñaloza, R.: The bayesian ontology language \(\cal{BEL.}\) J. Autom. Reasoning 58(1), 67–95 (2017)
Grove, A.J., Halpern, J.Y., Koller, D.: Random worlds and maximum entropy. In: Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science, 1992, LICS 1992, pp. 22–33. IEEE (1992)
Halpern, J.Y.: An analysis of first-order logics of probability. Artif. Intell. 46(3), 311–350 (1990)
Hansen, P., Jaumard, B.: Probabilistic satisfiability. In: Kohlas, J., Moral, S. (eds.) Handbook of Defeasible Reasoning and Uncertainty Management Systems, vol. 5, pp. 321–367. Springer, Netherlands (2000)
Klinov, P., Parsia, B.: Pronto: a practical probabilistic description logic reasoner. In: Bobillo, F., Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) UniDL/URSW 2008-2010. LNCS, vol. 7123, pp. 59–79. Springer, Heidelberg (2013). doi:10.1007/978-3-642-35975-0_4
Koller, D., Levy, A., Pfeffer, A.: P-classic: a tractable probablistic description logic. AAAI/IAAI 1997, 390–397 (1997)
Lukasiewicz, T.: Probabilistic logic programming with conditional constraints. ACM Trans. Comput. Logic 2(3), 289–339 (2001)
Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description logics for the semantic web. JWS 6(4), 291–308 (2008)
Lutz, C., Schröder, L.: Probabilistic description logics for subjective uncertainty. In: Proceedings of KR 2010. AAAI Press (2010)
Niepert, M., Noessner, J., Stuckenschmidt, H.: Log-linear description logics. In: IJCAI, pp. 2153–2158 (2011)
Nilsson, N.J.: Probabilistic logic. Artif. Intell. 28, 71–88 (1986)
Paris, J.B.: The Uncertain Reasoner’s Companion - A Mathematical Perspective. Cambridge University Press, Cambridge (1994)
Peñaloza, R., Potyka, N.: Probabilistic reasoning in the description logic \(\cal{ALCP}\) with the principle of maximum entropy. In: Schockaert, S., Senellart, P. (eds.) SUM 2016. LNCS, vol. 9858, pp. 246–259. Springer, Cham (2016). doi:10.1007/978-3-319-45856-4_17
Peñaloza, R., Potyka, N.: Towards statistical reasoning in description logics over finite domains (full version). CoRR abs/1706.03207 (2017). http://arxiv.org/abs/1706.03207
Potyka, N., Thimm, M.: Probabilistic reasoning with inconsistent beliefs using inconsistency measures. In: IJCAI, pp. 3156–3163 (2015)
Riguzzi, F., Bellodi, E., Lamma, E., Zese, R.: Probabilistic description logics under the distribution semantics. Semant. Web 6(5), 477–501 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Peñaloza, R., Potyka, N. (2017). Towards Statistical Reasoning in Description Logics over Finite Domains. In: Moral, S., Pivert, O., Sánchez, D., Marín, N. (eds) Scalable Uncertainty Management. SUM 2017. Lecture Notes in Computer Science(), vol 10564. Springer, Cham. https://doi.org/10.1007/978-3-319-67582-4_20
Download citation
DOI: https://doi.org/10.1007/978-3-319-67582-4_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67581-7
Online ISBN: 978-3-319-67582-4
eBook Packages: Computer ScienceComputer Science (R0)