Skip to main content

Closed-Form Solutions in Learning Probabilistic Logic Programs by Exact Score Maximization

  • Conference paper
  • First Online:
Scalable Uncertainty Management (SUM 2017)

Abstract

We present an algorithm that learns acyclic propositional probabilistic logic programs from complete data, by adapting techniques from Bayesian network learning. Specifically, we focus on score-based learning and on exact maximum likelihood computations. Our main contribution is to show that by restricting any rule body to contain at most two literals, most needed optimization steps can be solved exactly. We describe experiments indicating that our techniques do produce accurate models from data with reduced numbers of parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    These 9 rules are: , , , , , , , , .

References

  1. Bellodi, E., Riguzzi, F.: Structure learning of probabilistic logic programs by searching the clause space. Theory Pract. Logic Program. 15(2), 169–212 (2015)

    Article  Google Scholar 

  2. Boutilier, C., Friedman, N., Goldszmidt, M., Koller, D.: Context-specific independence in Bayesian networks. In Conference on Uncertainty in Artificial Intelligence, pp. 115–123 (1996)

    Google Scholar 

  3. De Campos, C., Ji, Q.: Efficient learning of Bayesian networks using constraints. J. Mach. Learn. Res. 12, 663–689 (2011)

    MathSciNet  MATH  Google Scholar 

  4. Cussens, J.: Bayesian network learning with cutting planes. In Conference on Uncertainty in Artificial Intelligence, pp. 153–160 (2011)

    Google Scholar 

  5. Dantsin, E., Eiter, T., Voronkov, A.: Complexity and expressive power of logic programming. ACM Comput. Surv. 33(3), 374–425 (2001)

    Article  Google Scholar 

  6. De Raedt, L., Thon, I.: Probabilistic rule learning. In: Frasconi, P., Lisi, F.A. (eds.) ILP 2010. LNCS, vol. 6489, pp. 47–58. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21295-6_9

    Chapter  Google Scholar 

  7. De Raedt, L., Dries, A., Thon, I., Van den Broeck, G., Verbeke, M.: Inducing probabilistic relational rules from probabilistic examples. In: International Joint Conference on Artificial Intelligence (2015)

    Google Scholar 

  8. Fierens, D., Van den Broeck, G., Renkens, J., Shrerionov, D., Gutmann, B., Janssens, G., de Raedt, L.: Inference and learning in probabilistic logic programs using weighted Boolean formulas. Theory Pract. Logic Program. 15(3), 358–401 (2014)

    Article  MathSciNet  Google Scholar 

  9. Friedman, N., Goldszmidt, M.: Learning Bayesian networks with local structure. In: Conference on Uncertainty in Artificial Intelligence, pp. 252–262 (1998)

    Google Scholar 

  10. Fuhr, N.: Probabilistic datalog – a logic for powerful retrieval methods. In: Conference on Research and Development in Information Retrieval, Seattle, Washington, pp. 282–290 (1995)

    Google Scholar 

  11. Dean, A., Voss, D., Draguljić, D.: Principles and techniques. Design and Analysis of Experiments. STS, pp. 1–5. Springer, Cham (2017). doi:10.1007/978-3-319-52250-0_1

    Chapter  Google Scholar 

  12. Lichman, M.: UCI Machine Learning Repository. University of California, Irvine, School of Information and Computer Sciences (2013)

    Google Scholar 

  13. Lukasiewicz, T.: Probabilistic logic programming. In: European Conference on Artificial Intelligence, pp. 388–392 (1998)

    Google Scholar 

  14. Ng, R., Subrahmanian, V.S.: Probabilistic logic programming. Inf. Comput. 101(2), 150–201 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Mateo (1988)

    MATH  Google Scholar 

  16. Poole, D.: Probabilistic Horn abduction and Bayesian networks. Artif. Intell. 64, 81–129 (1993)

    Article  MATH  Google Scholar 

  17. Poole, D.: Probabilistic relational learning and inductive logic programming at a global scale. In: Frasconi, P., Lisi, F.A. (eds.) ILP 2010. LNCS, vol. 6489, pp. 4–5. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21295-6_3

    Chapter  Google Scholar 

  18. De Raedt, L. (ed.): Logical and Relational Learning. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  19. Riguzzi, F., Bellodi, E., Zese, R.: A history of probabilistic inductive logic programming. Front. Robot. AI 1, 1–5 (2014)

    Article  Google Scholar 

  20. Sato, T.: A statistical learning method for logic programs with distribution semantics. In: International Conference on Logic Programming, pp. 715–729 (1995)

    Google Scholar 

  21. Sato, T., Kameya, Y.: Parameter learning of logic programs for symbolic-statistical modeling. J. Artif. Intell. Res. 15, 391–454 (2001)

    MathSciNet  MATH  Google Scholar 

  22. van Beek, P., Hoffmann, H.-F.: Machine learning of Bayesian networks using constraint programming. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 429–445. Springer, Cham (2015). doi:10.1007/978-3-319-23219-5_31

    Google Scholar 

  23. Wales, D.J., Doye, J.P.: Global optimization by Basin-Hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J. Phys. Chem. A 101, 5111–5116 (1997)

    Article  Google Scholar 

  24. Wales, D.J.: Energy Landscapes. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  25. Yang, F., Yang, Z., Cohen, W.W.: Differentiable learning of logical rules for knowledge base completion. Technical report arxiv.org/abs/1702.08367, Carnegie Mellon University (2017)

Download references

Acknowledgement

The first author is supported by a scholarship from Toshiba Corporation. The second and third authors are partially supported by CNPq. This work was partly supported by the São Paulo Research Foundation (FAPESP) grant 2016/01055-1 and the CNPq grants 303920/2016-5 and 420669/2016-7; also by São Paulo Research Foundation (FAPESP) grant 2016/18841-0 and CNPq grant 308433/2014-9; finally by FAPESP 2015/21880-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Henrique Otte Vieira de Faria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Otte Vieira de Faria, F.H., Cozman, F.G., Mauá, D.D. (2017). Closed-Form Solutions in Learning Probabilistic Logic Programs by Exact Score Maximization. In: Moral, S., Pivert, O., Sánchez, D., Marín, N. (eds) Scalable Uncertainty Management. SUM 2017. Lecture Notes in Computer Science(), vol 10564. Springer, Cham. https://doi.org/10.1007/978-3-319-67582-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67582-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67581-7

  • Online ISBN: 978-3-319-67582-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics