Skip to main content

Nonlinear Methodologies Applied to Automatic Recognition of Emotions: An EEG Review

  • Conference paper
  • First Online:
Ubiquitous Computing and Ambient Intelligence (UCAmI 2017)

Abstract

Development of algorithms for automatic detection of emotions is essential to improve affective skills of human-computer interfaces. In the literature, a wide variety of linear methodologies have been applied with the aim of defining the brain’s performance under different emotional states. Nevertheless, recent findings have demonstrated the nonlinear and dynamic behavior of the brain. Thus, the use of nonlinear analysis techniques has notably increased, reporting promising results with respect to traditional linear methods. In this sense, this work presents a review of the latest advances in the field, exploring the main nonlinear metrics used for emotion recognition from EEG recordings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Acar, S., Saraoglu, H., Akar, A.: Feature extraction for EEG-based emotion prediction applications through chaotic analysis. Turkey National Biomedical Engineering Meeting (2015)

    Google Scholar 

  2. Akar, S.A., Kara, S., Agambayev, S., Bilgiç, V.: Nonlinear analysis of EEGs of patients with major depression during different emotional states. Comput. Biol. Med. 67, 49–60 (2015)

    Article  Google Scholar 

  3. Aravind, E., Deepak, S., Sudheer, A.: EEG-based emotion recognition using statistical measures and auto-regressive modeling. In: International Conference on Computational Intellegence & Communication Technology, pp. 587–591 (2015)

    Google Scholar 

  4. Azami, H., Escudero, J.: Amplitude-aware permutation entropy: illustration in spike detection and signal segmentation. Comput. Methods Programs Biomed. 128, 40–51 (2016)

    Article  Google Scholar 

  5. Bandt, C., Pompe, B.: Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88(17), 174102 (2002)

    Article  Google Scholar 

  6. Blythe, D.A.J., Haufe, S., Müller, K.R., Nikulin, V.V.: The effect of linear mixing in the EEG on Hurst exponent estimation. Neuroimage 99, 377–87 (2014)

    Article  Google Scholar 

  7. Calvo, R.A., D’Mello, S.K.: Affect detection: an interdisciplinary review of models, methods, and their applications. IEEE Trans. Affect. Comput. 1(1), 18–37 (2010)

    Article  Google Scholar 

  8. Cao, Y., Cai, L., Wang, J., Wang, R., Yu, H., Cao, Y., Liu, J.: Characterization of complexity in the electroencephalograph activity of Alzheimer’s disease based on fuzzy entropy. Chaos 25(8), 083116 (2015)

    Article  MathSciNet  Google Scholar 

  9. Chanel, G., Rebetez, C., Bétrancourt, M., Pun, T.: Emotion assessment from physiological signals for adaptation of game difficulty. IEEE Trans. Syst. Man Cybern. Part A 41(6), 1052–1063 (2011)

    Article  Google Scholar 

  10. Chen, D., Han, N., Chen, J., Guo, H.: Novel algorithm for measuring the complexity of electroencephalographic signals in emotion recognition. J. Med. Imaging Health Inform. 7(1), 203–2010 (2017)

    Article  Google Scholar 

  11. Coan, J.A., Allen, J.J.B.: Handbook of Emotion Elicitation and Assessment. Oxford University Press, Oxford (2007)

    Google Scholar 

  12. Costa, M., Goldberger, A.L., Peng, C.K.: Multiscale entropy analysis of biological signals. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(2 Pt 1), 021906 (2005)

    Article  MathSciNet  Google Scholar 

  13. Daly, I., Malik, A., Hwang, F., Roesch, E., Weaver, J., Kirke, A., Williams, D., Miranda, E., Nasuto, S.J.: Neural correlates of emotional responses to music: an EEG study. Neurosci. Lett. 573, 52–57 (2014)

    Article  Google Scholar 

  14. Ekman, P.: An argument for basic emotions. Cogn. Emot. 6(3–4), 169–200 (1992)

    Article  Google Scholar 

  15. Esteller, R., Vachtsevanos, G., Echauz, J., Litt, B.: A comparison of waveform fractal dimension algorithms. IEEE Trans. Circ. Syst. I Fundam. Theory Appl. 48(2), 177–183 (2001)

    Article  Google Scholar 

  16. Faust, O., Bairy, M.G.: Nonlinear analysis of physiological signals: a review. J. Mech. Med. Biol. 12(4), 124005 (2012)

    Article  Google Scholar 

  17. Fernández-Caballero, A., Martínez-Rodrigo, A., Pastor, J.M., Castillo, J.C., Lozano-Monasor, E., López, M.T., Zangróniz, R., Latorre, J.M., Fernández-Sotos, A.: Smart environment architecture for emotion detection and regulation. J. Biomed. Inform. 64, 55–73 (2016)

    Article  Google Scholar 

  18. García-Martínez, B., Martínez-Rodrigo, A., Zangróniz, R., Pastor, J.M., Alcaraz, R.: Symbolic analysis of brain dynamics detects negative stress. Entropy 19(5), 196 (2017)

    Article  Google Scholar 

  19. García-Martínez, B., Martínez-Rodrigo, A., Zangróniz Cantabrana, R., Pastor García, J., Alcaraz, R.: Application of entropy-based metrics to identify emotional distress from electroencephalographic recordings. Entropy 18(6), 221 (2016)

    Article  MathSciNet  Google Scholar 

  20. Hatamikia, S., Nasrabadi, A.: Recognition of emotional states induced by music videos based on nonlinear feature extraction and SOM classification. In: 21st Iranian Conference on Biomedical Engineering (ICBME), pp. 333–337. IEEE (2014)

    Google Scholar 

  21. Hoseingholizade, S., Golpaygani, M.R.H., Monfared, A.S.: Studying emotions through nonlinear processing of EEG. Procedia Soc. Behav. Sci. 32, 163–169 (2012)

    Article  Google Scholar 

  22. Hosseini, S.A., Khalilzadeh, M.A., Changiz, S.: Emotional stress recognition system for affective computing based on bio-signals. J. Biol. Syst. 18, 101–114 (2010)

    Article  Google Scholar 

  23. Hosseini, S.A., Naghibi-Sistani, M.B.: Emotion recognition method using entropy analysis of EEG signals. Int. J. Image Graph. Sig. Process. 3(5), 30 (2011)

    Article  Google Scholar 

  24. Hosseinifard, B., Moradi, M.H., Rostami, R.: Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal. Comput. Methods Progr. Biomed. 109(3), 339–345 (2013)

    Article  Google Scholar 

  25. Jadhav, N., Manthalkar, R., Joshi, Y.: Effect of meditation on emotional response: an EEG-based study. Biomed. Signal Process. Control 34, 101–113 (2017)

    Article  Google Scholar 

  26. Jenke, R., Peer, A., Buss, M.: Feature extraction and selection for emotion recognition from EEG. IEEE Trans. Affect. Comput. 5(3), 327–339 (2014)

    Article  Google Scholar 

  27. Jie, X., Cao, R., Li, L.: Emotion recognition based on the sample entropy of EEG. Biomed. Mater. Eng. 24(1), 1185–92 (2014)

    Google Scholar 

  28. Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis. Cambrigde University Press, Cambrigde (2003)

    Book  MATH  Google Scholar 

  29. Khalili, Z., Moradi, M.: Emotion recognition system using brain and peripherical signals: using correlation dimension to improve the results of EEG. In: International Conference on Neural Networks, pp. 1571–1575 (2009)

    Google Scholar 

  30. Lake, D.E., Moorman, J.R.: Accurate estimation of entropy in very short physiological time series: the problem of atrial fibrillation detection in implanted ventricular devices. Am. J. Physiol. Heart Circ. Physiol. 300(1), H319–25 (2011)

    Article  Google Scholar 

  31. Lan, Z., Sourina, O., Wang, L., Liu, Y.: Real-time EEG-based emotion monitoring using stable features. Vis. Comput. 32, 347–358 (2016)

    Article  Google Scholar 

  32. Lee, Y.Y., Hsieh, S.: Classifying different emotional states by means of EEG-based functional connectivity patterns. PLoS ONE 9(4), e95415 (2014)

    Article  Google Scholar 

  33. Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Trans. Inf. Theory 22(1), 75–81 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  34. Li, X., Qi, X., Tian, Y., Sun, X., Fran, M., Cai, E.: Application of the feature extraction based on combination of permutation entropy and multi-fractal index to emotion recognition. Chin. High Technol. Lett. 26(7), 617–624 (2016)

    Google Scholar 

  35. Li, X., Xie, J., Hou, Y., Wang, J.: An improved multiscale entropy algorithm and its performance analysis in extraction of emotion EEG features. Chin. High Technol. Lett. 25(10), 865–870 (2015)

    Google Scholar 

  36. Li, Y., Cao, D., Wei, L., Tang, Y., Wang, J.: Abnormal functional connectivity of EEG gamma band in patients with depression during emotional face processing. Clin. Neurophysiol. 126(11), 2078–2089 (2015)

    Article  Google Scholar 

  37. Liu, Y., Sourina, O.: EEG-based subject-dependent emotion recognition algorithm using fractal dimension. In: IEEE International Conference on Systems, Man and Cybernetics, pp. 3166–3171 (2014)

    Google Scholar 

  38. Lozano-Monasor, E., López, M.T., Vigo-Bustos, F., Fernández-Caballero, A.: Facial expression recognition in ageing adults: from lab to ambient assisted living. J. Ambient Intell. Humanized Comput. 8, 567–578 (2017)

    Article  Google Scholar 

  39. Martínez-Rodrigo, A., Fernández-Sotos, A., Latorre, J.M., Moncho-Bogani, J., Fernández-Caballero, A.: Neural correlates of phrase rhythm: an EEG study of bipartite vs. rondo sonata form. Front. Neuroinform. 11, 29 (2017)

    Article  Google Scholar 

  40. Martínez-Rodrigo, A., Zangróniz, R., Pastor, J.M., Fernández-Caballero, A.: Arousal level classification in the ageing adult by measuring electrodermal skin conductivity. In: Bravo, J., Hervás, R., Villarreal, V. (eds.) AmIHEALTH 2015. LNCS, vol. 9456, pp. 213–223. Springer, Cham (2015). doi:10.1007/978-3-319-26508-7_21

    Chapter  Google Scholar 

  41. Martínez-Rodrigo, A., Zangróniz, R., Pastor, J.M., Sokolova, M.V.: Arousal level classification of the aging adult from electro-dermal activity: from hardware development to software architecture. Pervasive Mob. Comput. 34, 46–59 (2017)

    Article  Google Scholar 

  42. Martini, N., Menicucci, D., Sebastiani, L., Bedini, R., Pingitore, A., Vanello, N., Milanesi, M., Landini, L., Gemignani, A.: The dynamics of EEG gamma responses to unpleasant visual stimuli: from local activity to functional connectivity. NeuroImage 60(2), 922–932 (2012)

    Article  Google Scholar 

  43. Mert, A., Akan, A.: Emotion recognition from EEG signals by using multivariate empirical mode decomposition. Pattern Anal. Appl. (2016)

    Google Scholar 

  44. Miskovic, V., Schmidt, L.A.: Cross-regional cortical synchronization during affective image viewing. Brain Res. 1362, 102–111 (2010)

    Article  Google Scholar 

  45. Mitchell, A.J., Lord, K., Slattery, J., Grainger, L., Symonds, P.: How feasible is implementation of distress screening by cancer clinicians in routine clinical care? Cancer 118(24), 6260–9 (2012)

    Article  Google Scholar 

  46. Murugappan, M., Nagarajan, R., Yaacob, S.: Combining spatial filtering and wavelet transform for classifying human emotions using EEG signals. J. Med. Biol. Eng. 31(1), 45–51 (2011)

    Article  Google Scholar 

  47. Paraschiv-Ionescu, A., Buchser, E., Rutschmann, B., Aminian, K.: Nonlinear analysis of human physical activity patterns in health and disease. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(2 Pt 1), 021913 (2008)

    Article  Google Scholar 

  48. Paul, S., Mazumder, N., Ghosh, P., Tibarewala, D., Vimalarini, G.: EEG-based emotion recognition system using MFDFA as feature extractor. In: International Conference on Robotics, Automation, Control and Embedded Systems (2015)

    Google Scholar 

  49. Peng, H., Hu, B., Zheng, F., Fan, D., Zhao, W., Chen, X., Yang, Y., Cai, Q.: A method of identifying chronic stress by EEG. Pers. Ubiquit. Comput. 17(7), 1341–1347 (2013)

    Article  Google Scholar 

  50. Picard, R.W.: Affective computing (1995)

    Google Scholar 

  51. Pincus, S.M.: Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 88(6), 2297–301 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  52. Puthankattil, S.D., Joseph, P.K.: Analysis of EEG signals using wavelet entropy and approximate entropy: a case study on depression patients. Int. J. Med. Health Biomed. Pharm. Eng. 8(7), 420–424 (2014)

    Google Scholar 

  53. Richman, J.S., Moorman, J.R.: Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278(6), H2039–49 (2000)

    Google Scholar 

  54. Rodríguez-Bermúdez, G., Garcia-Laencina, P.J.: Analysis of EEG signals using nonlinear dynamics and chaos: a review. Appl. Math. Inf. Sci. 9(5), 2309 (2015)

    MathSciNet  Google Scholar 

  55. Rui, C., Li, L., Junjie, C.: Comparative study of approximate entropy and sample entropy in EEG data analysis. Biothecnol. Indian J. 7(11), 493–498 (2013)

    Google Scholar 

  56. Rukavina, S., Gruss, S., Hoffmann, H., Tan, J.W., Walter, S., Traue, H.C.: Affective computing and the impact of gender and age. PLoS ONE 11(3), e0150584 (2016)

    Article  Google Scholar 

  57. Russell, J.A.: A circumplex model of affect. J. Pers. Soc. Psychol. 39(6), 1161–1178 (1980)

    Article  Google Scholar 

  58. Russell, J.A., Bachorowski, J.A., Fernandez-Dols, J.M.: Facial and vocal expressions of emotion. Ann. Rev. Psychol. 54, 329–49 (2003)

    Article  Google Scholar 

  59. Schröder, M., Cowie, R.: Towards emotion-sensitive multimodal interfaces: the challenge of the European network of excellence HUMAINE. In: Adapting the Interaction Style to Affective Factors Workshop in conjunction with User Modeling (2005)

    Google Scholar 

  60. Sourina, O., Liu, Y.: A fractal-based algorithm of emotion recognition from EEG using arousal-valence model. In: Proceeding of the International Conference on Bio-Inspired Systems and Signal Processing, pp. 209–214 (2011)

    Google Scholar 

  61. Sporns, O., Tononi, G., Edelman, G.M.: Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. Cereb. Cortex 10(2), 127–141 (2000)

    Article  Google Scholar 

  62. Tadic, B., Gligorijevic, V., Mitrovic, M., Suvakov, M.: Co-evolutionary mechanisms of emotional bursts in online social dynamics and networks. Entropy 15(12), 5084–5120 (2013)

    Article  MATH  Google Scholar 

  63. Valenza, G., Lanata, A., Scilingo, E.P.: The role of nonlinear dynamics in affective valence and arousal recognition. IEEE Trans. Affect. Comput. 3(2), 237–249 (2012)

    Article  Google Scholar 

  64. Wang, X., Nie, D., Lu, B.: Emotional state classification from EEG data using machine learning approach. Neurocomputing 129, 94–106 (2014)

    Article  Google Scholar 

  65. Yuvaraj, R., Murugappan, M., Ibrahim, N.M., Sundaraj, K., Omar, M.I., Mohamad, K., Palaniappan, R.: Optimal set of EEG features for emotional state classification and trajectory visualization in Parkinson’s disease. Int. J. Psychophysiol. 94(3), 482–95 (2014)

    Article  Google Scholar 

  66. Zhang, Y., Ji, X., Zhang, S.: An approach to EEG-based emotion recognition using combined feature extraction method. Neurosci. Lett. 633, 152–157 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Spanish Ministerio de Economía, Industria y Competitividad, Agencia Estatal de Investigación (AEI)/European Regional Development Fund under Vi-SMARt (TIN2016-79100-R), HA-SYMBIOSIS (TIN2015-72931-EXP) and EmoBioFeedback (DPI2016-80894-R) grants. Beatriz García-Martínez holds the FPU16/03740 scholarship from Spanish Ministerio de Educación, Cultura y Deporte.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo Martínez-Rodrigo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

García-Martínez, B., Martínez-Rodrigo, A., Alcaraz, R., Fernández-Caballero, A., González, P. (2017). Nonlinear Methodologies Applied to Automatic Recognition of Emotions: An EEG Review. In: Ochoa, S., Singh, P., Bravo, J. (eds) Ubiquitous Computing and Ambient Intelligence. UCAmI 2017. Lecture Notes in Computer Science(), vol 10586. Springer, Cham. https://doi.org/10.1007/978-3-319-67585-5_73

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67585-5_73

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67584-8

  • Online ISBN: 978-3-319-67585-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics