Skip to main content

Application of Tolerance Near Sets to Audio Signal Classification

  • Chapter
  • First Online:
Advances in Feature Selection for Data and Pattern Recognition

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 138))

  • 1232 Accesses

Abstract

This chapter is an extension of our work presented where the problem of classifying audio signals using a supervised tolerance class learning algorithm (TCL) based on tolerance near sets was first proposed. In the tolerance near set method(TNS), tolerance classes are directly induced from the data set using a tolerance level and a distance function. The TNS method lends itself to applications where features are real-valued such as image data, audio and video signal data. Extensive experimentation with different audio-video data sets were performed to provide insights into the strengths and weaknesses of the TCL algorithm compared to granular (fuzzy and rough) and classical machine learning algorithms.

This research has been supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery grant. Special thanks to Dr. Rajen Bhatt, Robert Bosch Technology Research Center, US for sharing this data set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.cs.waikato.ac.nz/ml/weka/.

  2. 2.

    http://www.mimuw.edu.pl/~szczuka/rses/start.html.

  3. 3.

    http://magnatune.com/.

  4. 4.

    https://labrosa.ee.columbia.edu/millionsong/pages/additional-datasets.

  5. 5.

    http://www.ismir.net/.

  6. 6.

    https://archive.ics.uci.edu/ml/datasets/TV+News+Channel+Commercial+Detection+Dataset.

References

  1. Banic, N.: Detection of commercials in video content based on logo presence without its prior knowledge. In: 2012 Proceedings of the 35th International Convention MIPRO, pp. 1713–1718 (2012)

    Google Scholar 

  2. Bazan, J.G., Szczuka, M.: The rough set exploration system. Springer Transactions on Rough Sets III. LNCS, vol. 3400, pp. 37–56. Springer, Berlin (2005)

    Google Scholar 

  3. Bergstra, J., Kegl, B.: Meta-features and adaboost for music classification. In: Machine Learning Journal: Special Issue on Machine Learning in Music (2006)

    Google Scholar 

  4. Bhatt, R., Krishnamoorthy, P., Kumar, S.: Efficient general genre video abstraction scheme for embedded devices using pure audio cues. In: 7th International Conference on ICT and Knowledge Engineering, pp. 63–67 (2009)

    Google Scholar 

  5. Covell, M., Baluja, S., Fink, M.: Advertisement detection and replacement using acoustic and visual repetition. In: 2006 IEEE Workshop on Multimedia Signal Processing, pp. 461–466 (2006)

    Google Scholar 

  6. Eyben, F.: Classification by Large Audio Feature Space Extraction, chap. Acoustic Features and Modelling, pp. 9–122. Springer International Publishing (2016)

    Google Scholar 

  7. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: An update. SIGKDD Explorations 11(1), 10–18 (2009)

    Article  Google Scholar 

  8. Haque, M.A., Kim, J.M.: An analysis of content-based classification of audio signals using a fuzzy c-means algorithm. Multimedia Tools Appl. 63(1), 77–92 (2013)

    Article  Google Scholar 

  9. Hendrik, S.: Improving genre annotations for the million song dataset. In: 16th International Society for Music Information Retrieval Conference, pp. 63–70 (2015)

    Google Scholar 

  10. Henry, C., Ramanna, S.: Parallel computation in finding near neighbourhoods. In: Proceedings of the 6th International Conference on Rough Sets and Knowledge Technology (RSKT11). Lecture Notes in Computer Science, pp. 523–532. Springer, Berlin (2011)

    Google Scholar 

  11. Henry, C., Ramanna, S.: Signature-based perceptual nearness. Application of near sets to image retrieval. Springer J. Math. Comput. Sci. 7, 71–85 (2013)

    Google Scholar 

  12. Henry, C.J.: Near sets: theory and applications. Ph.D. thesis, University of Manitoba (2011)

    Google Scholar 

  13. Hunt, M., Lennig, M., Mermelstein, P.: Experiments in syllable-based recognition of continuous speech. In: Proceedings of International Conference on Acoustics, Speech and Signal Processing, pp. 880–883 (1996)

    Google Scholar 

  14. Jinsong, Z., Oussalah, M.: Automatic system for music genre classification (2006) (PGMNet2006)

    Google Scholar 

  15. Kannao, R., Guha, P.: Tv commercial detection using success based locally weighted kernel combination. In: Proceedings on the the International Conference on MultiMedia Modeling, pp. 793–805. Springer International Publishing (2016)

    Google Scholar 

  16. Kaur, K., Ramanna, S., Henry, C.: Measuring the nearness of layered flow graphs: application to content based image retrieval. Intell. Decis. Technol. J. 10, 165–181 (2016)

    Article  Google Scholar 

  17. Kostek, B.: Perception-based data processing in acoustics, applications to music information retrieval and psychophysiology of hearing. Series on Cognitive Technologies. Springer, Berlin (2005)

    Google Scholar 

  18. Lee, C.H., Shih, J.L., Yu, K.M., Lin, H.S.: Automatic music genre classification based on modulation spectral analysis of spectral and cepstral features. IEEE Trans. Multimed. 11(4), 670–682 (2009)

    Article  Google Scholar 

  19. Lie, L., Hao, J., HongJiang, Z.: A robust audio classification and segmentation method. In: Proceedings of the Ninth ACM International Conference on Multimedia, MULTIMEDIA ’01, pp. 203–211 (2001)

    Google Scholar 

  20. Liu, N., Zhao, Y., Zhu, Z., Lu, H.: Exploiting visual-audio-textual characteristics for automatic tv commercial block detection and segmentation. IEEE Trans. Multimed. 13(5), 961–973 (2011)

    Article  Google Scholar 

  21. Logan, B.: Mel frequency cepstral coefficients for music modeling. In: Proceedings of 1st International Conference on Music Information Retrieval, Plymouth, MA (2000)

    Google Scholar 

  22. Bertin-Mahieux, T., Ellis, D.P., Whitman, B., Lamere, P.: The million song dataset. In: Proceedings of the 12th International Conference on Music Information Retrieval (ISMIR 2011), pp. 7–12 (2011)

    Google Scholar 

  23. Mandel, M., Poliner, G., Ellis, D.: Support vector machine active learning for music retrieval. Multimed. Syst. 12(1), 3–13 (2006)

    Article  Google Scholar 

  24. Orłowska, E.: Semantics of Vague Concepts. Applications of rough sets. In: Technical Report 469, Institute for Computer Science. Polish Academy of Sciences (1982)

    Google Scholar 

  25. Orłowska, E.: Semantics of vague concepts. In: Dorn, G., Weingartner, P. (eds.) Foundations of Logic and Linguistics. Problems and Solutions, pp. 465–482. Plenum Press, London (1985)

    Google Scholar 

  26. Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11(5), 341–356 (1982)

    Article  MATH  Google Scholar 

  27. Peters, J.: Tolerance near sets and image correspondence. Int. J. Bio-Inspired Comput. 1(4), 239–245 (2009)

    Article  Google Scholar 

  28. Peters, J.: Corrigenda and addenda: tolerance near sets and image correspondence. Int. J. Bio-Inspired Comput. 2(5), 310–318 (2010)

    Article  Google Scholar 

  29. Peters, J., Wasilewski, P.: Tolerance spaces: origins, theoretical aspects and applications. Inf. Sci.: An Int. J. 195(5), 211–225 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  30. Peters, J.F.: Near sets. General theory about nearness of objects. Appl. Math. Sci. 1(53), 2609–2629 (2007)

    MATH  MathSciNet  Google Scholar 

  31. Peters, J.F.: Near sets. Special theory about nearness of objects. Fundam. Inf. 75(1–4), 407–433 (2007)

    Google Scholar 

  32. Peters, J.F.: Near sets: an introduction. Math. Comput. Sci. 7(1), 3–9 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  33. Peters, J.F., Naimpally, S.: Applications of near sets. Am. Math. Soc. Not. 59(4), 536–542 (2012)

    Google Scholar 

  34. Peters, J.F., Wasilewski, P.: Foundations of near sets. Inf. Sci. 179(18), 3091–3109 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  35. Hoffmann, P., Kostek, B.: Music genre recognition in the rough set-based environment. In: Proceedings of 6th International Conference, PReMI 2015, pp. 377–386 (2015)

    Google Scholar 

  36. Poincaré, J.: Sur certaines surfaces algébriques; troisième complément ‘a l’analysis situs. Bulletin de la Société de France 30, 49–70 (1902)

    Article  MATH  MathSciNet  Google Scholar 

  37. Poli, G., Llapa, E., Cecatto, J., Saito, J., Peters, J., Ramanna, S., Nicoletti, M.: Solar flare detection system based on tolerance near sets in a GPU-CUDA framework. Knowl.-Based Syst. J. Elsevier 70, 345–360 (2014)

    Article  Google Scholar 

  38. Ramanna, S., Singh, A.: Tolerance-based approach to audio signal classification. In: Proceedings of 29th Canadian AI Conference, LNAI 9673, pp. 83–88 (2016)

    Google Scholar 

  39. Rao, P.: Audio signal processing. In: S.P. B. Prasad (ed.) Speech, Audio, Image and Biomedical Signal Processing using Neural Networks, pp. 169–190. Springer International Publishing (2008). https://doi.org/10.1007/978-3-319-27671-7_66

  40. Sadlier, D.A., Marlow, S., O’Connor, N.E., Murphy, N.: Automatic TV advertisement detection from MPEG bitstream. In: Proceedings of the 1st International Workshop on Pattern Recognition in Information Systems: In Conjunction with ICEIS 2001, PRIS ’01, pp. 14–25 (2001)

    Google Scholar 

  41. Sengoz, C., Ramanna, S.: A semi-supervised learning algorithm for web information extraction with tolerance rough sets. In: Proceedings of Active Media Technology 2014. LNCS, vol. 8610, pp. 1–10 (2014)

    Google Scholar 

  42. Sengoz, C., Ramanna, S.: Learning relational facts from the web: a tolerance rough set approach. Pattern Recognit. Lett. Elsevier 67(2), 130–137 (2015)

    Article  Google Scholar 

  43. Sossinsky, A.B.: Tolerance space theory and some applications. Acta Appl. Math.: Int. Survey J. Appl. Math. Math. Appl. 5(2), 137–167 (1986)

    Article  MathSciNet  Google Scholar 

  44. Sturm, B.L.: An analysis of the GTZAN music genre dataset. In: Proceedings of the Second International ACM Workshop on Music Information Retrieval with User-centered and Multimodal Strategies, pp. 7–12 (2012)

    Google Scholar 

  45. Typke, R., Wiering, F., Veltkamp, R.C.: A survey of music information retrieval systems. In: ISMIR 2005, 6th International Conference on Music Information Retrieval, London, UK, 11–15 September 2005, Proceedings, pp. 153–160 (2005)

    Google Scholar 

  46. Tzanetakis, G., Cook, P.: Musical genre classification of audio signals. IEEE Trans. Speech Audio Process. 10(5), 293–302 (2002)

    Article  Google Scholar 

  47. Vyas, A., Kannao, R., Bhargava, V., Guha, P.: Commercial block detection in broadcast news videos. In: Proceedings of the 2014 Indian Conference on Computer Vision Graphics and Image Processing, No. 63 in ICVGIP ’14, pp. 63:1–63:7 (2014)

    Google Scholar 

  48. Wasilewski, P., Peters, J.F., Ramanna, S.: Perceptual tolerance intersection. Trans. Rough Sets XIII Springer LNCS 6499, 159–174 (2011)

    Article  MATH  Google Scholar 

  49. Wold, E., Blum, T., Keislar, D., Wheaton, J.: Content-based classification, search, and retrieval of audio. IEEE Multimed. 3(2), 27–36 (1996)

    Article  Google Scholar 

  50. Wolski, M.: Perception and classification. A note on near sets and rough sets. Fundam. Inf. 101, 143–155 (2010)

    MATH  MathSciNet  Google Scholar 

  51. Wolski, M.: Toward foundations of near sets: (pre-)sheaf theoretic approach. Math. Comput. Sci. 7(1), 125–136 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  52. Zeeman, E.: The topology of the brain and visual perception. University of Georgia Institute Conference Proceedings, pp. 240–256 (1962); Fort, M.K., Jr. (ed.) Topology of 3-Manifolds and Related Topics. Prentice-Hall, Inc

    Google Scholar 

  53. Zeeman, E., Buneman, O.: Tolerance spaces and the brain. In: Towards a Theoretical Biology, vol. 1, pp. 140–151; Published in Waddington, C.H. (ed.) Towards a Theoretical Biology. The Origin of Life, Aldine Pub, Co. (1968)

    Google Scholar 

  54. Zhang, T., Kuo, C.: Content-Based Audio Classification and Retrieval for Audiovisual Data Parsing. Kluwer Academic Publishers, Norwell (2001)

    Book  MATH  Google Scholar 

  55. Zhouyu, F., Guojun, L., Kai, M., Dengsheng, Z.: A survey of audio-based music classification and annotation. IEEE Trans. Multimed. 13(2), 303–319 (2011)

    Article  Google Scholar 

  56. Zwan, P., Kostek, B., Kupryjanow, A.: Automatic classification of musical audio signals employing machine learning approach. Audio Engineering Society Convention, vol. 130, pp. 2–11 (2011)

    Google Scholar 

  57. Zwicker, E., Fastl, H.: Psychoacoustics, facts and models. Springer Series in Information Sciences. Springer, Berlin (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheela Ramanna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, A., Ramanna, S. (2018). Application of Tolerance Near Sets to Audio Signal Classification. In: Stańczyk, U., Zielosko, B., Jain, L. (eds) Advances in Feature Selection for Data and Pattern Recognition. Intelligent Systems Reference Library, vol 138. Springer, Cham. https://doi.org/10.1007/978-3-319-67588-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67588-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67587-9

  • Online ISBN: 978-3-319-67588-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics