Abstract
Illumination direction and color are two physics-based forensic cues that are based on the same underlying model. In this work, we discuss these methods in the light of their joint physical model, with a particular focus on the limitations and a qualitative study of failure cases of these methods. Our goal is to provide directions for future research to further reduce the list of constraints that these methods require in order to work. We hope that this eventually broadens the applicability of physics-based methods, and to spread their main advantage, namely their stringent models for deviations of the expected image formation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barni, M., Chen, Z., Tondi, B.: Adversary-aware, data-driven detection of double JPEG compression: how to make counter-forensics harder. In: IEEE International Workshop on Information Forensics and Security, December 2016
Bayar, B., Stamm, M.C.: A deep learning approach to universal image manipulation detection using a new convolutional layer. In: ACM Workshop on Information Hiding and Multimedia Security, pp. 5–10, June 2016
Bianchi, T., Piva, A., Perez-Gonzalez, F.: Near optimal detection of quantized signals and application to JPEG forensics. In: IEEE International Workshop on Information Forensics and Security, pp. 168–173, November 2013
Chen, M., Fridrich, J., Goljan, M., Lukás, J.: Determining image origin and integrity using sensor noise. IEEE Trans. Inf. Forensics Secur. 3(1), 74–90 (2008)
Christlein, V., Riess, C., Jordan, J., Riess, C., Angelopoulou, E.: An evaluation of popular copy-move forgery detection approaches. IEEE Trans. Inf. Forensics Secur. 7(6), 1841–1854 (2012)
Cozzolino, D., Poggi, G., Verdoliva, L.: Efficient dense-field copy-move forgery detection. IEEE Trans. Inf. Forensics Secur. 10(11), 2284–2297 (2015)
Cozzolino, D., Poggi, G., Verdoliva, L.: Splicebuster: a new blind image splicing detector. In: IEEE International Workshop on Information Forensics and Security, pp. 1–6 (2015)
de Carvalho, T.J., Faria, F.A., Pedrini, H., Torres, R.S., Rocha, A.: Illuminant-based transformed spaces for image forensics. IEEE Trans. Inf. Forensics Secur. 11(4), 720–733 (2015)
de Carvalho, T.J., Riess, C., Angelopoulou, E., Pedrini, H., Rocha, A.: Exposing digital image forgeries by illumination color classification. IEEE Trans. Inf. Forensics Secur. 8(7), 1182–1194 (2013)
Deng, Z., Gijsenij, A., Zhang, J.: Source camera identification using auto-white balance approximation. In: Proceedings of the 13th IEEE International Conference on Computer Vision (ICCV 2011), Barcelona, Spain, pp. 57–64, November 2011
Fan, W., Wang, K., Cayre, F., Xiong, Z.: 3D lighting-based image forgery detection using shape-from-shading. In: Proceedings of the 20th European Signal Processing Conference (EUSIPCO-2012), Bucarest, Romania, pp. 1777–1781, August 2012
Farid, H.: Photo Forensics. MIT Press, Cambridge (2016)
Gholap, S., Bora, P.K.: Illuminant colour based image forensics. In: IEEE Region 10 Conference TENCON (TENCON 2008), Hyderabad, India, November 2008
Iuliani, M., Fanfani, M., Colombo, C., Piva, A.: Reliability assessment of principal point estimates for forensic applications. J. Vis. Commun. Image Representation 42(1), 65–77 (2017)
Johnson, M., Farid, H.: Exposing digital forgeries in complex lighting environments. IEEE Trans. Inf. Forensics Secu. 2(3), 450–461 (2007)
Johnson, M.K., Farid, H.: Detecting photographic composites of people. In: Shi, Y.Q., Kim, H.-J., Katzenbeisser, S. (eds.) IWDW 2007. LNCS, vol. 5041, pp. 19–33. Springer, Heidelberg (2008). doi:10.1007/978-3-540-92238-4_3
Kee, E., Farid, H.: Exposing digital forgeries from 3-D lighting environments. In: Proceedings of the 2nd IEEE International Workshop on Information Forensics and Security (WIFS 2010), Seattle, WA, USA, December 2010
Kee, E., O’Brien, J.F., Farid, H.: Exposing photo manipulation from shading and shadows. ACM Trans. Graph. 33(5), 165:1–165:21 (2014)
Kirchner, M.: Linear row and column predictors for the analysis of resized images. In: ACM SIGMM Multimedia & Security Workshop, pp. 13–18, September 2010
O’Brien, J.F., Farid, H.: Exposing photo manipulation with inconsistent reflections. ACM Trans. Graph. 31(1), 1–11 (2012)
Peng, B., Wang, W., Dong, J., Tan, T.: Automatic detection of 3-D lighting inconsistencies via a facial landmark based morphable model. In: IEEE International Conference on Image Processing, pp. 3932–3936 (2016)
Peng, B., Wang, W., Dong, J., Tan, T.: Optimized 3D lighting environment estimation for image forgery detection. IEEE Trans. Inf. Forensics Secur. 12(2), 479–494 (2017)
Popescu, A.C., Farid, H.: Exposing digital forgeries by detecting traces of resampling. Signal Process. 53(2), 758–767 (2005)
Redi, J., Taktak, W., Dugelay, J.-L.: Digital image forensics: a booklet for beginners. Multimed. Tools Appl. 51(1), 133–162 (2011)
Riess, C., Angelopoulou, E.: Scene illumination as an indicator of image manipulation. In: Böhme, R., Fong, P.W.L., Safavi-Naini, R. (eds.) IH 2010. LNCS, vol. 6387, pp. 66–80. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16435-4_6
Riess, C., Unberath, M., Naderi, F., Pfaller, S., Stamminger, M., Angelopoulou, E.: Handling multiple materials for exposure of digital forgeries using 2-D lighting environments. Multimed. Tools Appl. 76(4), 4747–4764 (2016)
Sencar, H.T., Memon, N. (eds.): Digital Image Forensics: There is More to a Picture than Meets the Eye. Springer, New York (2013). doi:10.1007/978-1-4614-0757-7
Shafer, S.A.: Using color to separate reflection components. J. Color Res. Appl. 10(4), 210–218 (1985)
Tan, R., Nishino, K., Ikeuchi, K.: Color constancy through inverse-intensity chromaticity space. J. Optical Soc. Am. A 21(3), 321–334 (2004)
Wu, X., Fang, Z.: Image splicing detection using illuminant color inconsistency. In: Proceedings of the 3rd IEEE International Conference on Multimedia Information Networking and Security (MINES 2011), Shanghai, China, pp. 600–603, November 2011
Yu, H., Ng, T.-T., Sun, Q.: Recaptured photo detection using specularity distribution. In: Proceedings of the 15th IEEE International Conference on Image Processing (ICIP 2008), San Diego, CA, USA, pp. 3140–3143, October 2008
Zhang, W., Cao, X., Zhang, J., Zhu, J., Wang, P.: Detecting photographic composites using shadows. In: Proceedings of the IEEE International Conference on Multimedia and Expo (ICME 2009), Cancun, Mexico, pp. 1042–1045, June 2009
Acknowledgements
This material is based on research sponsored by the Air Force Research Laboratory and the Defense Advanced Research Projects Agency under agreement number FA8750-16-2-0204. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon.
The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Air Force Research Laboratory and the Defense Advanced Research Projects Agency or the U.S. Government.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Riess, C. (2017). Illumination Analysis in Physics-Based Image Forensics: A Joint Discussion of Illumination Direction and Color. In: Piva, A., Tinnirello, I., Morosi, S. (eds) Digital Communication. Towards a Smart and Secure Future Internet. TIWDC 2017. Communications in Computer and Information Science, vol 766. Springer, Cham. https://doi.org/10.1007/978-3-319-67639-5_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-67639-5_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67638-8
Online ISBN: 978-3-319-67639-5
eBook Packages: Computer ScienceComputer Science (R0)