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Abstract. We propose to extend iUML-B class-diagrams to elaborate
Abstract Data Types (ADTs) specified using Event-B theories. Classes
are linked to data types, while attributes and associations correspond to
operators of the data types. Axioms about the data types and operators
are specified as constraints on the class. We illustrate our approach on a
development of a control system in the railway domain.
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1 Introduction

Event-B [1] is a well-established formalism for developing systems whose compo-
nents can be modelled as discrete transition systems. An Event-B model contains
two parts: a dynamic part (called machine) modelled by a transition system and
a static part (called context) capturing the model’s parameters and assumptions
about them. The main technique in Event-B to cope with system complexity
is stepwise refinement, where design details are gradually introduced into the
formal models. Refinement enables the abstraction of machines, and since ab-
stract machines contain fewer details than concrete ones, they are usually easier
to validate and verify.

To enhance the user experience with developing models, Event-B and its sup-
porting Rodin platform (Rodin) is extensible. One of the extensions is iUML-B
which includes state-machines and class-diagrams [9,10,11]. While state-machines
give a visualisation of the system’s dynamic state and the transitions between
them, class-diagrams provide a visualisation of the model data and relationships.
Another extension is the Theory plug-in [3] for extending the mathematical lan-
guage of Event-B and supporting reasoning about these additional concepts.
In particular, we can use Event-B theories to formalise Abstract Data Types

(ADTs) [7] and subsequently utilise the ADTs to model the system’s dynamic
behaviour in the machines.

Our motivation is to provide a diagrammatic visualisation for the ADTs
specified using Event-B theories. In particular, we propose to extend iUML-B
class-diagrams with new and adapted diagrammatic elements, linking them to
the data types and operators in the theories. The extension helps the design
of the ADTs and provides a better understanding of the data types and the
relationships between them.

The original publication is available at https://doi.org/10.1007/978-3-319-67729-3_7
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Our contribution therefore is a proposal for extending iUML-B class-diagrams.
Classes are linked to data types specified using theories. Attributes and associ-
ations elaborate operators of the data types. Axioms about the data types and
operators are specified as class constraints. We illustrate our approach on a de-
velopment of the RailGround case study [8] provided by Thales Austria GmbH.

The rest of the paper is structured as follows. Section 2 gives some back-
ground information about the Event-B method and the extensions such as iUML-
B and the Theory plug-in. We present our proposal for extending iUML-B class-
diagrams for Event-B theories in Section 3. We illustrate our approach using the
Rail Ground case study in Section 4. We give a summary of our development in
Section 5 and some conclusion of our work in Section 6.

2 Background

2.1 Event-B

Event-B [1] is a formal method for system development. Main features of Event-
B include the use of refinement to introduce system details gradually into the
formal model. An Event-B model contains two parts: contexts and machines.
Contexts contain carrier sets, constants, and axioms that constrain the carrier
sets and constants. Machines contain variables v , invariants I(v) that constrain
the variables, and events. An event comprises a guard denoting its enabling-
condition and an action describing how the variables are modified when the
event is executed. In general, an event e has the following form, where t are
the event parameters, G(t , v) is the guard of the event, and v := E(t , v) is the
action of the event1.

e == any t where G(t,v) then v := E(t,v) end

Amachine in Event-B corresponds to a transition system where variables rep-
resent the states and events specify the transitions. Contexts can be extended

by adding new carrier sets, constants, axioms, and theorems. Machine M can be
refined by machine N (we call M the abstract machine and N the concrete ma-
chine). The state of M and N are related by a gluing invariant J(v ,w) where v ,
w are variables of M and N, respectively. Intuitively, any “behaviour” exhibited
by N can be simulated by M, with respect to the gluing invariant J . Refine-
ment in Event-B is reasoned event-wise. Consider an abstract event e and the
corresponding concrete event f. Somewhat simplifying, we say that e is refined
by f if f’s guard is stronger than that of e and f’s action can be simulated by
e’s action, taking into account the gluing invariant J . More information about
Event-B can be found in [6]. Event-B is supported by Rodin [2], an extensible
toolkit which includes facilities for modelling, verifying the consistency of mod-
els using theorem proving and model checking techniques, and validating models
with simulation-based approaches.

1 Actions in Event-B are, in the most general cases, non-deterministic [6].
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2.2 iUML-B

iUML-B [9,10,11] provides a diagrammatic modelling notation for Event-B in
the form of state-machines and class-diagrams. The diagrammatic elements are
contained within an Event-B model and generate or contribute to parts of it.
For example a state-machine will automatically generate the Event-B data el-
ements (sets, constants, axioms, variables, and invariants) to implement the
states, and contribute additional guards and actions to existing events. Class
diagrams provide a way to visually model data relationships. Classes, attributes
and associations are linked to Event-B data elements (carrier sets, constants, or
variables) and generate constraints on those elements. In this paper, we focus
on extending class-diagrams for visualising abstract data types specified using
theories.

2.3 Theory Plug-in

The Theory plug-in [3] enables developers to define new (polymorphic) data
types and operators upon those data types. These additional modelling concepts
might be defined directly (including inductive definitions) or axiomatically.

An (inductive) datatype can be directly defined using several constructors.
Each constructor can have zero or more destructors. A datatype without any def-
inition is axiomatically defined. We focus on axiomatic data types in this paper.
By convention, an axiomatic datatype satisfies the non-emptiness and maximal-

ity properties, i.e., for an axiomatic type S, we have S 6= ? and 8 e · e 2 S.
As an example, an axiomatic type for stacks is declared as follows.

1 theory Stack(T)
2 types STACK(T)
3 end

Operators can be defined directly, inductively (on inductive data types) or
axiomatically. An operator defined without any definition will be defined ax-
iomatically. Operator notation is prefix by default. Operators with two argu-
ment can be infix. Further properties can be declared for operators including
associativity and commutativity.

In the following, we show the declaration for some stack operators: emptyStack,
top, pop, and push.

1 operators
2 emptyStack: "STACK(T)"
3 top(st : "STACK(T)"): "T"
4 pop(st : "STACK(T)"): "STACK"
5 for "st 6= emptyStack"
6 push(st : "STACK(T)", e : "T"): "STACK"
7 � (e : "T", st : "STACK(T)") infix
8 axioms
9 @axm1 "8 st, e · e 2 T ) push(st, e) 6= emptyStack"

10 @axm2 "8 st, e · e 2 T ) pop(push(st, e)) = st"
11 @axm3 "8 st, e · e 2 T ) top(push(st, e)) = e"
12 @axm4 "8 st · st 2 STACK(T) ^ st 6= emptyStack ) top(st) � st"
13 @thm1 "8 st, e· e 2 T ) e � push(st, e)" theorem
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An additional infix operator � defines a predicate (without any returning
type) specifying whether an element e is in the stack st or not. The axioms
are the assumptions about these operators that can be used to define proof
rules. Note that @thm1 is a theorem which is derivable from the axioms defined
previously. We omit the presentation of proof rules in this paper.

Finally, theories can be constructed in hierarchical manner: a theory can
extend other theories by adding more data types, operators, and axioms.

3 Class-diagrams for Abstract Data Types

An ADT is a mathematical model of a class of data structures. It is typically
defined by a set of operations that can be performed on the ADT, along with
a specification of their e↵ect. By using Event-B theories to formalise ADTs, we
can subsequently utilise the ADTs to model the system’s dynamic behaviour in
the machines. An ADT can be specified straightforwardly using Event-B theories
with axiomatic data type and operators, e.g., the STACK data type in Section 2.3.

In order to aid the design of ADTs, we propose to extend class diagrams to
ADTs that are specified using theories. In particular, data types are represented
using classes and operators are modelled using attributes or associations. We
illustrate our idea using the STACK data type example. The class-diagram for
the STACK data type is shown in Figure 1. In the diagram, there are two classes,

Fig. 1: A class-diagram for Stack ADT

namely STACK and T. The dashed arrow from STACK to T indicates that STACK is
polymorphic and T is the type parameter of STACK. This is also denoted by the
label, i.e., STACK<T>, of the STACK class. Since class T represents a formal type
parameter it cannot own any child features such as associations or constraints.

For now, we use the existing class diagram features to illustrate the proposed
approach. Our intention is to add features to iUML-B to represent the ADT
features with new diagram elements including a new class container for adding
class constant instances, a new arrow/label feature for expressing class type pa-
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rameters, a new diagram node for multi-source associations, and a new diagram
node for representing abstract formal type parameters such as T.

Operators are represented by the special associations between classes. Each
association operator can have one or more inputs and zero or one outputs. An
operator without any output, e.g., � , indicates a predicate. The inputs to oper-
ators are labelled to indicate their formal parameters. If an operator has two or
more inputs, e.g., push or � , each input is numbered (e.g., 1, 2, . . .) specifying
their order.

A “query” operator, i.e., those with one input which is an instance of the
data type and one output (e.g., top), can be specified as attributes of the class.
An operator without any input and return an instance of the data type, i.e., a
constant of the data type (e.g., emptyStack), is specified using a “constant” of
the class. Finally, the axioms and theorems about the data type and its operators
are specified as constraints on the class. The constraints are lifted automatically
to all instances of the data type. Let st be the instance name for the STACK data
type, @axm1 becomes

8 st · st 2 STACK ) (8 e · e 2 T ) push(st, e) 6= emptyStack) .

Note that in general, the class-diagrams and their corresponding theories for
ADTs are developed gradually through several steps. In each step, additional
data types, operators, and constraints can be added.

4 Example. An Interlocking System

The example used in this paper is based on a formal model of a railway interlock-
ing system, which was developed by Thales Austria GmbH. This is a simplified
version of interlocking systems, built specifically for research on formal valida-
tion and verification of railway systems [8]. This example is used as part of the
rail use case of the European project Enable-S3 [4].

4.1 Requirements

Railway systems, in general, aim at providing a timely, e�cient and most impor-
tantly a safe train service. This requires a reliable command and control system
that ensures a train can safely enter its specified route. In the system under con-
sideration, the railway topology consists of a set of connected elements, which
are controlled by signals passing information to the trains. The safety of a train
is ensured by allowing its route to be set, only if it does not conflict with the
current available routes. The following requirements are extracted and simplified
from [8]. For illustration, we will consider the network topology with one track
and two points as in Figure 2.

Rail Elements The railway topology is formed by a set of rail elements. A Rail

Element is a unit which provides a physical running path for the trains, i.e. rails
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Fig. 2: An example railway topology [8]

(e.g. track, points, crossing). Typically, a rail element is made up of one or more
segments. The sets of segments belong to each rail element are disjoint.

REQ 1 The network topology is a set of rail elements.

REQ 2 A rail element contains one or more segments

In Figure 2, the segments are {bc,cb,di,id,de,ed,jg,gj,fg,gf}. There are
three rail elements, namely T (a track), P1, P2 (points). The relationship between
the rail elements and the segments are as follows:

T 7! {bc,cb}, P1 7! {di,id,de,ed}, P2 7! {jg,gj,fg,gf}.

Element Positions For each rail element, a Rail Element Position is a distinct
situation of that rail element. Furthermore, each element position defines the
set of possible element connections (defined by segments) for that particular rail
element.

REQ 3 For each rail element, there is a set of possible element positions

REQ 4 Each rail element and position correspond to a set of rail segments

For example, a points has three possible position POS_X (in transition), POS_L
(left), POS_R (right). Consider points P1, position POS_X corresponds to an emp-
tyset of segments, POS_L corresponds to segments {di, id}, and POS_R corre-
sponds to segments {de, ed}.

Paths A path is a sequence of rail segments, with the constraint that two rail
segments of the same rail element are not allowed within one path. A path can
be activated so that trains are allowed to be on that path.

REQ 5 A path is a sequence of rail segments.
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REQ 6 Two rail segments belonging to the same element are not allowed within
one path.

Consider the example in Figure 2, a path could be the following sequence of
segments [bc,di,jg], or [gf,ed,cb]. Note that any sub-sequence of a path is
also a path, e.g., [di, jg] is also a path.

Route Life-Cycle A set of routes are defined. Each route correspond to a
pre-defined path in the network. Before becoming active, a route must be re-
quested. As soon as all conditions for the route (e.g., rail elements must be in
the required position to establish its path), a requested route can be activated.
A path corresponds to an active route is called active path. As a train moves
along a route, rail elements that are no longer in use can be released. An active
route can be removed only after all its rail elements are released. A rail element
position can only be changed if the rail element is not part of an active path.

REQ 7 A requested route can become an active route when all conditions for
that route are met

REQ 8 An active route can be removed only after all its rail elements are re-
leased.

REQ 9 A rail element position can only be changed if it is not part of an active
path.

In the example network topology, we can have the following routes R1–R4,
with the following associations: R1 7! [bc, de, fg], R2 7! [bc, di, jg],
R3 7! [gf, ed, cb], R4 7! [gj, id, cb].

Vacancy Detection To simplify, we assume that each rail element corresponds
to exactly one Track Vacancy Detection (TVD) section. The state of the TVD
section is either vacant or occupied. A TVD section is occupied if there is some
train on some segment belonging to the rail element.

REQ 10 Each rail element corresponds to exactly one TVD section.

REQ 11 A TVD section can be either in vacant or occupied state.

Signals A signal is an entity capable of passing information to trains. A signal is
associated with a rail element for a particular traversal direction. A signal aspect
is an (abstract) information conveyed by a signal. Signal Default is a predefined
aspect of signals. Trains are assumed to obey the signals, in particular, stop at
a signal containing default aspect.

REQ 12 A signal is associated with a rail element.

REQ 13 A signal may be set to an aspect other than default, only if there is an
active element after this signal.

In Figure 2, we have 4 signals, S1–S4. Note that both S1 and S3 associated with
T, but they protect the rail element in di↵erent traversal directions.
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Safety Properties Safety in this model is ensured by the paths which are
active. The paths can only be set if all its elements are in the right positions.
Safety is ensured by preventing paths to be requested if there are other paths
requiring the same elements.

REQ 14 Two active paths cannot overlap

REQ 15 An active path must have all its elements in the right positions

REQ 16 A route can be requested if it is disjoint from other active or requested
routes.

4.2 Development

For this paper, we omit the presentation of the proof rules associated with the
theories. Most of them are directly inferred from the axioms constraining the
data types. For the example, we abstract from rail segments. Details about rail
segments (e.g., REQ 2, REQ 4, REQ 5, REQ 6) can be introduced later via
refinement. The development is available online at http://doi.org/10.5258/
SOTON/D0162 including instructions on Rodin configuration.

Refinement strategy We adopt the following refinement strategy for develop-
ing a model of the system. The requirements taken into account at each refine-
ment level is also listed.

– M0: To abstractly specify active routes in the system, focusing on collision-
free properties (REQ 14).

– M1: To introduce the life-cycle of routes by specifying requested routes
(REQ 7, REQ 16).

– M2: To formalise the rail elements and the link between rail elements and
paths (REQ 1, REQ 8).

– M3: To specify the element positions and their association with the rail
elements (REQ 3, REQ 15, REQ 9).

– M4: To introduce the track vacancy detection mechanism (REQ 10,REQ 11).
– M5: To introduce the signals controlling the trains’ movement (REQ 12,

REQ 13).

M0. Paths In the initial model, we focus on the notion of paths and the rela-
tionships between them (abstractly). In particular, our model of the dynamic of
the system centres around the main safety property of the system, i.e., collision-
free (REQ 14). For this, we want to specify that there are no overlaps between
currently active paths. The diagram for the initial theory of the PATH data type
can be seen in Figure 3. Two operators, namely � and v , are introduced to
specify disjointness and sub-path relationships between two paths p1 and p2.
Properties of the operators are specified by constraints @axm1 and @axm2. Con-
straint @axm1 states that � is symmetric and @axm2 states that disjointness is

http://doi.org/10.5258/SOTON/D0162
http://doi.org/10.5258/SOTON/D0162
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Fig. 3: Class-diagrams in M0

preserved by the sub-path relationship. The corresponding theory can be seen
as follows. Note that the constraints are lifted to be universally quantified over
all instance p of the PATH data type.

1 theory Paths_01
2 types
3 PATH
4 operators
5 � (p1: "PATH", p2 : "PATH") infix
6 v (p1: "PATH", p2 : "PATH") infix
7 axioms
8 @axm1 "8 p· p 2 PATH ) (8 q · p � q ) q � p)"
9 @axm2 "8 p· p 2 PATH ) (8 p1,p2 · p1 v p2 ^ p2 � p ) p � p1)"

10 end

We can use the PATH data type to specify our dynamic system as follows.
Context C0_RG_Paths declares a carrier set ROUTE denoting a set of pre-defined
routes. Constant path links the routes with its initial paths (specified by the
PATH data type).

1 context C0_RG_Paths
2 sets ROUTE
3 constants path
4 axioms
5 @axm1: "path 2 ROUTE ! PATH"
6 end

In machine M0_RG_Paths, variable path_curr is introduced to capture the
active routes. Invariant @inv1 associates each active route with some path. In-
variant @inv2 specifies the collision-free property: two di↵erent active routes
must be disjoint.

1 machine M0_RG_Paths
2 sees C0_RG_Paths
3 variables path_curr
4 invariants
5 @inv1: "path_curr 2 ROUTE 7! PATH"
6 @inv2: "8 pth1, pth2 ·
7 pth1 2 dom(path_curr) ^ pth2 2 dom(path_curr) ^ pth1 6= pth2 )
8 path_curr(pth1) � path_curr(pth2)"
9 INITIALISATION == begin @act1: "path_curr := ? " end
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Three events are modelled at this specification level for adding, modifying,
and removing routes. In addRoute, a new route pe, where the corresponding path
(i.e., path(pe)) does not conflict with any existing routes (addRoute’s @grd2), is
activated. The initial path associated with pe is path(pe). Event modifyRoute
updates the path corresponding to the route pe with the new path pth. Guard
@grd2 of modifyRoute specifies that the new path pth must be a sub-path of
the current path associated with pe (a route can only be updated by releasing
rail elements which no longer in use). Finally, event removeRoute removes an
active route specified by route pe from the set of active routes.

1 events
2 addRoute ==
3 any pe where
4 @grd1: "pe 2 ROUTE \ dom(path_curr)"
5 @grd2: "8 p · p 2 dom(path_curr) ) path(pe) � path_curr(p)"
6 then
7 @act1: "path_curr(pe) := path(pe)"
8 end
9

10 modifyRoute ==
11 any pe pth where
12 @grd1: "pe 2 dom(path_curr)"
13 @grd2: "pth v path_curr(pe)"
14 then
15 @act1: "path_curr(pe) := pth"
16 end
17

18 removeRoute ==
19 any pe where
20 @grd1: "pe 2 dom(path_curr)"
21 then
22 @act2: "path_curr := {pe} C� path_curr"
23 end
24 end

M1. Route Life-Cycle In the first refinement, we model the life-cycle of routes
by introducing the notion of requested routes. In this refinement, there are no
changes for the PATH data type. Variable path_req captures the set of requested
routes (i.e., a subset of ROUTE) which must be disjoint from the set of current
routes (@inv2).

1 invariants
2 @inv1: "path_req ✓ ROUTE"
3 @inv2: "path_req \ dom(path_curr) = ? "

We refine event addRoute as follows, i.e., a requested route pe becomes an
active route.

1 addRoute
2 refines addRoute
3 any pe where
4 @grd1: "pe 2 path_req"
5 then
6 @act1: "path_curr(pe) := path(pe)"
7 @act2: "path_req := path_req \ {pe}"
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8 end

In order to prove the refinement of event addRoute, we need additional invariants
linking path_req and path_curr.

1 @inv3: "8 pth1, pth2 · pth1 2 path_req ^ pth2 2 dom(path_curr) ) path(pth1) � path_curr
(pth2)"

2 @inv4: "8 pth1, pth2 · pth1 2 path_req ^ pth2 2 path_req ^ pth1 6= pth2 ) path(pth1) �
path(pth2)"

Two new events requestRoute and removeRequest are introduced to create
a new request for a path and remove an existing request. Notice the guards of
requestRoute ensure the maintenance of invariants @inv3 and @inv4.

1 requestRoute ==
2 any pe where
3 @grd1: "pe 2 ROUTE \ path_req"
4 @grd2: "pe /2 dom(path_curr)"
5 @grd3: "8 p · p 2 dom(path_curr) ) path(pe) � path_curr(p)"
6 @grd4: "8 p · p 2 path_req ) path(pe) � path(p)"
7 then
8 @act1: "path_req := path_req [ {pe}"
9 end

10

11 removeRequest ==
12 any pth where
13 @grd1: "pth 2 path_req"
14 then
15 @act1: "path_req := path_req \ {pth}"
16 end

M2. Rail Elements In this refinement, we introduce the rail elements into
the formal models. A new data type RAIL_ELEMENT is introduced. We extend
the PATH data type with a new operator rail_elements returning the set of
rail elements associated with each path (see Figure 4). Another operator ⌧
specifying whether a rail element re belongs to some path p or not is defined
using the direct definition, i.e. re ⌧ p == re 2 rail_elements(p). Finally,
we introduce an operator shrink for removing a rail element re from the path p.
The shrink operator is only defined for the rail element re belonging to the path
p. Axiom @axm1 defines the disjointness between paths p and q as the disjointness
of their rail elements. Axioms @axm2 and @axm3 specify the properties of shrink
operator: it makes the path p smaller and removes the element re from the
path’s rail elements. The corresponding theory is as follows.

1 theory Paths_02
2 imports Paths_01 RailElement_01
3 operators
4 rail_elements(p: "PATH"): "(RAIL_ELEMENT)"
5 ⌧ (re: "RAIL_ELEMENT", p : "PATH") infix =
6 "re 2 rail_elements(p)"
7 shrink(p : "PATH", re : "RAIL_ELEMENT"): "PATH"
8 for "re ⌧ p"
9 axioms

10 @axm1 "8 p · p 2 PATH ) (8 q · p � q , rail_elements(p) \ rail_elements(q) = ? )"
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Fig. 4: Class-diagrams in M2

11 @axm2 "8 p · p 2 PATH ) (8 re · re ⌧ p ) shrink(p, re) v p)"
12 @axm3 "8 p · p 2 PATH ) (8 re · re ⌧ p ) rail_elements(shrink(p, re)) =

rail_elements(p) \ {re})"
13 end

For the dynamic system, a variable rail_element_path is introduced to
keep the relationship between the rail elements and the current active route.
Each rail element is associated with at most one active route (@inv1). Invariant
@inv2 states the consistency between rail_element_path and the set of rail
elements associated with some active route p.

1 @inv1: "rail_element_path 2 RAIL_ELEMENT 7! dom(path_curr)"
2 @inv2: "8 p· p 2 dom(path_curr) ) rail_elements(path_curr(p)) = rail_element_path⇠[{p}]"

We focus on the refinement of modifyRoute in this level. The changes to the
other events are trivial. With the introduction of the shrink operator, we can
now be more precise about how an active route is modified, i.e., it can be done
by releasing some no longer used rail element re.

1 modifyRoute
2 refines modifyRoute
3 any pe re where
4 @grd1: "pe 2 dom(path_curr)"
5 @grd2: "re ⌧ path_curr(pe)"
6 with
7 @pth: "pth = shrink(path_curr(pe), re)"
8 then
9 @act1: "path_curr(pe) := shrink(path_curr(pe), re)"

10 @act2: "rail_element_path := {re} C� rail_element_path"
11 end

The witness for pth (using the with clause) specifies the value of the removed
abstract parameter pth. The rail element re is removed from the domain of
rail_element_path: it is no longer associated with any active path.
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M3. Element Positions In this refinement, we introduce the positions for rail
elements. We introduce a new ADT, namely RAIL_POSITION (see Figure 5). A
new operator @ is added to the RAIL_ELEMENT ADT. For an element position
rp and a rail element re, ep @ re states that rp is a valid position for re.
An additional operator Default for RAIL_ELEMENT which returns the default
position for each rail element. Axiom @axm1 states that the default position for
a rail element re is always a valid one for that rail element. Finally, an operator
Path_Element_Pos is added to the PATH ADT which returns a (partial) function
relating the rail elements (belonging to the path) with the element position.
Axiom @axm2 states that the position defined for a rail element re of a path
p must be a valid position for re. Axiom @axm3 gives the relationship between
rail_elements and Path_Element_Pos as expected.

We introduce a variable rail_positions to capture the current position of
every rail element (@inv1 below). Invariant @inv2 states that the position of
every rail element re must be a valid one for re. Invariant @inv3 specifies the
important safety property for each current active route: the position of the rail
elements that belong to the active route must be the correct position.

1 invariants
2 @inv1: "rail_positions 2 RAIL_ELEMENT ! RAIL_POSITION"
3 @inv2: "8 re · rail_positions(re) @ re"
4 @inv3: "8 p, re · p 2 dom(path_curr) ^ re ⌧ path_curr(p) ) rail_positions(re) =

Path_Element_Pos(path_curr(p))(re)"

An additional guard @grd2 is added to addRoute event as follows.

1 @grd2: "8 re · re @ path(pe) ) rail_positions(re) = Path_Element_Pos(path(pe))(re)"

The guard ensures that only when every rail element re that belongs to a re-
quested route pe is in the correct position, can this route pe can be turned into
a current route. Two new events are added for setting the position of a rail
element: setRailElementPos and setRailElementPath.

Fig. 5: Class-diagrams in M3
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1 setRailElementPos
2 any re pos where
3 @grd1: "re /2 dom(rail_element_path)"
4 @grd2: "8 p · p 2 path_req ) re ⌧ path(p)"
5 @grd3: "pos @ re" // @pos is valid
6 @grd4: "pos 6= rail_positions(re)" // @pos is new
7 then
8 @act: "rail_positions(re) := pos"
9 end

10

11 setRailElementPath
12 any p re where
13 @grd1: "p 2 path_req" // @p is a requested path.
14 @grd2: "re ⌧ path(p)" // @re is a rail element of @p
15 @grd3: "Path_Element_Pos(path(p))(re) 6= rail_positions(re)"
16 then
17 @act: "rail_positions(re) := Path_Element_Pos(path(p))(re)"
18 end

Event setRailElementPos sets the new position pos for a rail element re which
does not belong to any active path (@grd1) and does not belong to any requested
route (@grd2). Event setRailElementPath sets the position for a rail element
re belonging to a requested route p. The new position of the element re is the
position required for path p as specified by the operator Path_Element_Pos.

M4. Vacancy Detection In this refinement, we introduce the track vacancy
detection. Each TVD section corresponds to a rail element. As a result, we
introduce a new data type TVD_SECTION with an operator TVD_Element as in
Figure 6. Axioms @axm1 and @axm2 ensure the one-to-one relationship between

Fig. 6: Class-diagrams in M4

TVD_SECTION and RAIL_ELEMENT.
We introduce a new variable TVD_status to capture the current vacancy

status of the TVD sections. The invariants for this refinement level are as follows,

1 @inv1: "TVD_status 2 TVD_SECTION ! TVD_STATE_ENUM"
2 @inv2: "8 s · TVD_status(s) = TVD_STATE_OCCUPIED ) TVD_Element(s) 2 dom(

rail_element_path)"
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where TVD_STATE_ENUM is a data type with two elements: TVD_STATE_OCCUPIED
and TVD_STATE_VACANT.

Invariant @inv2 states that if a TVD section s is occupied then the corre-
sponding rail element must be a part of an active path. This corresponds to the
assumption that trains cannot go out of the current active paths.

Event modifyRoute is extended as follows.

1 modifyRoute extended
2 refines modifyRoute
3 any s where
4 @grd2: "TVD_status(s) = TVD_STATE_OCCUPIED"
5 @grd3: "re = TVD_Element(s)"
6 then
7 @act3: "TVD_status(s) := TVD_STATE_VACANT"
8 end

The additional parameter s denotes the TVD section corresponding to the rail
element re (@grd3). The status of s is changed from occupied to vacant in this
modifyRoute event. Essentially, this event models the situation where a train
departs from the rail element re (hence the TVD status changed from occupied
to vacant) and the rail element re is released.

A new event setTVDStatus is introduced for changing the status of a TVD
section from vacant to occupied.

1 setTVDStatus
2 any s where
3 @grd1: "TVD_status(s) = TVD_STATE_VACANT"
4 @grd2: "TVD_Element(s) 2 dom(rail_element_path)"
5 then
6 @act1: "TVD_status(s) := TVD_STATE_OCCUPIED"
7 end

Guard @grd2 ensures that the rail element is currently within some active path.

M5. Signal In this refinement, we introduce the signals and signal aspects.
Two new ADTs are introduced: SIGNAL and SIGNAL_ASPECT_ENUM (Figure 7).
The SIGNAL data type has one operator, namely Signal_Element, returning the
rail element that the signal protects. The SIGNAL_ASPECT_ENUM has a constant,
namely SIGNAL_ASPECT_DEFAULT, representing the default aspect of the signals.
No additional assumptions are made about SIGNAL and SIGNAL_ASPECT_ENUM.

We introduce a variable signal_status to model the status of all the signals.

1 @inv1: "signal_status 2 SIGNAL ! SIGNAL_ASPECT_ENUM"

Event setTVDStatus is refined by two events according to whether or not the
rail element is protected by a signal. Event setTVDStatusPath captures the case
where the rail element corresponding to the TVD section s is not protected by
a signal. This reflects the situation where a train is moving along an existing
path. Event setTVDStatusSignal corresponds to the case where the rail ele-
ment is protected by a signal. Note that the signal is turned automatically to
SIGNAL_ASPECT_DEFAULT when the train occupied the element.



16 T.S. Hoang, C. Snook, D. Dghaym, M. Butler

Fig. 7: Class-diagrams in M5

1 setTVDStatusPath refines setTVDStatus
2 any s where
3 @grd1: "TVD_status(s) = TVD_STATE_VACANT"
4 @grd2: "TVD_Element(s) 2 dom(rail_element_path)"
5 @grd3: "8 sg · TVD_Element(s) 6= Signal_Element(sg)"
6 then
7 @act1: "TVD_status(s) := TVD_STATE_OCCUPIED"
8 end
9

10 setTVDStatusSignal refines setTVDStatus
11 any s sg where
12 @grd1: "TVD_status(s) = TVD_STATE_VACANT"
13 @grd2: "signal_status(sg) 6= SIGNAL_ASPECT_DEFAULT"
14 @grd3: "TVD_Element(s) = Signal_Element(sg)"
15 then
16 @act1: "TVD_status(s) := TVD_STATE_OCCUPIED"
17 @act2: "signal_status(sg) := SIGNAL_ASPECT_DEFAULT"
18 end

In order to prove the correctness of the refinement of setTVDStatus by
setTVDStatusSignal, we need the following invariants. Invariants @inv2 and
@inv3 state that if the signal status for sg is not SIGNAL_ASPECT_DEFAULT then
(1) the rail element corresponding to the signal must belong to some active path
and (2) the rail element must be vacant as detected by the TVD section. Invari-
ant @inv4 states that if two signals sg1 and sg2 protecting the same rail element
and sg1 is not SIGNAL_ASPECT_DEFAULT then sg2 must have the default aspect.

1 @inv2: "8 sg · signal_status(sg) 6= SIGNAL_ASPECT_DEFAULT ) Signal_Element(sg) 2 dom(
rail_element_path)"

2 @inv3: "8 sg, s · signal_status(sg) 6= SIGNAL_ASPECT_DEFAULT ^ TVD_Element(s) =
Signal_Element(sg) ) TVD_status(s) = TVD_STATE_VACANT"

3 @inv4: "8 sg1, sg2 · signal_status(sg1) 6= SIGNAL_ASPECT_DEFAULT ^ Signal_Element(sg1) =
Signal_Element(sg2) ^ sg1 6= sg2 ) signal_status(sg2) = SIGNAL_ASPECT_DEFAULT"

A new event to set the signal aspect to proceed (i.e., not the default aspect)
as follows, taking into account the above invariants.

1 setSignalAspectProceed
2 any sg asp s where
3 @grd1: "signal_status(sg) = SIGNAL_ASPECT_DEFAULT"
4 @grd2: "asp 6= SIGNAL_ASPECT_DEFAULT"
5 @grd3: "Signal_Element(sg) 2 dom(rail_element_path)"
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6 @grd4: "TVD_Element(s) = Signal_Element(sg)"
7 @grd5: "TVD_status(s) = TVD_STATE_VACANT"
8 @grd6: "8 sg1 · Signal_Element(sg) = Signal_Element(sg1) ^ sg 6= sg1 ) signal_status(

sg1) = SIGNAL_ASPECT_DEFAULT"
9 then

10 @act1: "signal_status(sg) := asp"
11 end

5 Summary

Our RailGround development using theories contains 6 machines, i.e., M0–M5
forming a refinement-chain. Out of the total 147 proof obligations, 95% (139) are
discharged automatically. This high perchantage of automatic proofs is due to the
carefully constructed ADTs with appropriate axioms and proof rules supporting
the reasoning.

Typically we develop Event-B models to express important (safety) proper-
ties at a very abstract level and then make a series of refinements to gradually
introduce the details of a design mechanism that maintains this property. The
RailGround model is atypical in that it begins by modelling the established prin-
cipals of interlocking systems without modelling the safety properties that those
systems are designed to achieve. The reason for this is that the principles of
interlocking are a proven design mechanism for controlling trains in a safe way.
The model focusses instead on providing a precise and accurate specification
of the interlocking product-line. Nevertheless, the model provides a good case
study to illustrate the use of our diagrammatic representation of ADTs linked to
Event-B theories including su�cient properties concerning the lack of conflicts
in paths.

6 Conclusion

In this paper, we propose an extension to class-diagrams elaborating ADTs spec-
ified using Event-B theories. Classes are linked to data types, while attributes
and associations correspond to operators of the data types. Axioms about the
data types and operators are specified as constraints on the class. We illustrate
our approach on a development of RailGround case study provided by Thales
Austria GmbH. The diagrammatic visualisation helps us to design appropriate
theories supporting the system development. Moreover, the diagrams and their
corresponding theories can be developed gradually and integrated seemlessly
with the refinement development process of Event-B.

In the future, we plan to implement our proposal by extending iUML-B.
Furthermore, we plan to incorporate other techniques such as instantiation [5]
to support the development of theories. Currently, during the development, we
extending our class-diagrams with new data types, operators and axioms. This
result in data type with several operators and constraints. A possibility for ADT
is that they contain contradict axioms. An alternative to data type extension
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is instantation where one or more operators is “replaced” by new ones. For
example, when we introduce the rail_elements operator for paths, we can
instantiate � (i.e., define it) using rail_elements and prove the axioms about
� can be derived from the properties of rail_elements. Compare to extension,
instatiation will result in more concrete and smaller data types.

Acknowledgement

This work has been conducted within the ENABLE-S3 project that has received
funding from the ECSEL Joint Undertaking under Grant Agreement no. 692455.
This Joint Undertaking receives support from the European Union’s HORIZON
2020 research and innovation programme and Austria, Denmark, Germany, Fin-
land, Czech Republic, Italy, Spain, Portugal, Poland, Ireland, Belgium, France,
Netherlands, United Kingdom, Slovakia, Norway.

References

1. Jean-Raymond Abrial. Modeling in Event-B: System and Software Engineering.
Cambridge University Press, 2010.

2. Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, Thai Son Hoang,
Farhad Mehta, and Laurent Voisin. Rodin: An open toolset for modelling and rea-
soning in Event-B. Software Tools for Technology Transfer, 12(6):447–466, Novem-
ber 2010.

3. Michael J. Butler and Issam Maamria. Practical theory extension in event-b.
In Zhiming Liu, Jim Woodcock, and Huibiao Zhu, editors, Theories of Program-
ming and Formal Methods - Essays Dedicated to Jifeng He on the Occasion of His
70th Birthday, volume 8051 of Lecture Notes in Computer Science, pages 67–81.
Springer, 2013.

4. The Enable-S3 Consortium. Enable-S3 European project, 2016. enable-s3.eu.
5. Andreas Fürst, Thai Son Hoang, David A. Basin, Naoto Sato, and Kunihiko

Miyazaki. Large-scale system development using abstract data types and refine-
ment. Sci. Comput. Program., 131:59–75, 2016.

6. Thai Son Hoang. An introduction to the Event-B modelling method. In Industrial
Deployment of System Engineering Methods, pages 211–236. Springer-Verlag, 2013.

7. B. Liskov and S. Zilles. Programming with Abstract Data Types. In Proceedings of
the ACM SIGPLAN Symposium on Very High Level Languages, pages 50–59, New
York, NY, USA, 1974. ACM. http://doi.acm.org/10.1145/800233.807045.

8. Klaus Reichl. Railground Model on github, 2016. https://github.com/klar42/

railground/ (Accessed 20/04/2017).
9. Mar Yah Said, Michael Butler, and Colin Snook. A method of refinement in UML-

B. Softw. Syst. Model., 14(4):1557–1580, October 2015.
10. Colin Snook. iUML-B statemachines. In Proceedings of the Rodin Workshop 2014,

pages 29–30, Toulouse, France, 2014. http://eprints.soton.ac.uk/365301/.
11. Colin Snook and Michael Butler. UML-B: Formal modeling and design aided by

UML. ACM Trans. Softw. Eng. Methodol., 15(1):92–122, January 2006.

enable-s3.eu
http://doi.acm.org/10.1145/800233.807045
https://github.com/klar42/railground/
https://github.com/klar42/railground/
http://eprints.soton.ac.uk/365301/

	Class-diagrams for Abstract Data Types

