Abstract
Halfway between music analysis and graph visualization, we propose tonal pitch representations from the chromatic scale. On the first part of the experiment, a 12-node graph is connected as a Rhythm Network and visualized with a Circular Layout, commonly known as Pitch constellation. This particular graph topology focuses on node structure and gives strength to weak edges. At this occasion, we unveil the Singularity Threshold, giving an opportunity to isolate structure from singular parts of melodies. Where usual Pitch constellations focus on chords, we focus on successive pitch intervals. On the second part, we propose a rhythm representation using a Force-Directed layout. In addition to structural information, our second technique shows proximal and peripheral elements. This experiment features 6 melodies that we propose to visualize using Gephi.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adamic, L., Glance, N.: The political blogosphere and the 2004 US election: divided they blog. In: Proceedings of the 3rd International workshop on Link discovery, pp. 36–43 (2005)
Association, T.I.M.: Standard midi-file format spec. 1(1) (2003)
Bigo, L., Andreatta, M., Giavitto, J.-L., Michel, O., Spicher, A.: Computation and visualization of musical structures in chord-based simplicial complexes. In: Yust, J., Wild, J., Burgoyne, J.A. (eds.) MCM 2013. LNCS (LNAI), vol. 7937, pp. 38–51. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39357-0_3
Blot, G., Fouchal, H., Rousseaux, F., Saurel, P.: An experimentation of vanets for traffic management. In: IEEE International Conference on Communications. IEEE, Kuala Lumpur, Malaysia, May 2016
Blot, G., Rousseaux, F., Saurel, P.: Pattern discovery in e-learning courses: a time based approach. In: CODIT14 2nd International Conference on Control, Decision and Information Technologies. IEEE, Metz, France, November 2014
Blot, G., Saurel, P., Rousseaux, F.: Recommender engines under the influence of popularity. In: Benyoucef, M., Weiss, M., Mili, H. (eds.) MCETECH 2015. LNBIP, vol. 209, pp. 138–152. Springer, Cham (2015). doi:10.1007/978-3-319-17957-5_9
Boitmanis, K., Brandes, U., Pich, C.: Visualizing internet evolution on the autonomous systems level. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 365–376. Springer, Heidelberg (2008). doi:10.1007/978-3-540-77537-9_36. http://dl.acm.org/citation.cfm?id=1784907.1784945
McCartin, B.J.: Prelude to musical geometry (1998)
Krumhansl, C.L.: A key-finding algorithm based on tonal hierarchies. Oxford University Press, New York (1990)
Ching-Hua, C., Chew, S.E.: Polyphonic audio key finding using the spiral array ceg algorithm. In: ICME, pp. 21–24. IEE, July 2005
Craig, S.: Visual hierarchical key analysis. In: Computers in Entertainment (CIE) - Theoretical and Practical Computer Applications in Entertainment, vol. 3, pp. 1–19. ACM, New York, NY, USA, October 2005
David, R.: Geometry and harmony. In: 8th Annual international conference of bridges: Mathematical Connections in Art, Music, and Science, pp. 67–72. Alberta, August 2005
David, T.: The Cognition of Basic Musical Structures. MIT Press, Cambridge (2001). p. 404
Temperley, D.: A Bayesian approach to key-finding. In: Anagnostopoulou, C., Ferrand, M., Smaill, A. (eds.) ICMAI 2002. LNCS (LNAI), vol. 2445, pp. 195–206. Springer, Heidelberg (2002). doi:10.1007/3-540-45722-4_18
Ernest, K.: Uber neue Musik (1937)
Fowler, J.H., Christakis, N.A.: Dynamic spread of happiness in a large social network: longitudinal analysis over 20 years in the framingham heart study (September 2008)
Fred, L.: Tonal Pitch Space. Oxford University Press, Oxford (2001)
Jacomy, M., Venturini, T., Heymann, S., Bastian, M.: Forceatlas2, a continuous graph layout algorithm for handy network visualization designed for the gephi software, June 2014
Burgoyne, J.A., Saul, L.K.: Visualization of low dimensional structure in tonal pitch space. In: Proceedings of the 2005 International Computer Music Conference. Barcelona, Spain (September 2005)
Rockwell, J.: Birdcage flights: a perspective on inter-cardinality voice leading (2009)
Granovetter, M.S.: The strength of weak ties (1973)
Masaya, Y.: Masaya Music, New York, USA, May 2006
Matthias, R., Thomas, R., Pierre, H.: Improvements of symbolic key finding methods. In: International Computer Music Conference (2008)
1.2draft Primer, G.: Gexf working group (March 2012)
Soren Tjagvad, M., Gerhald, W.: Key-finding with interval profiles. In: International Computer Music Conference, August 2007
Toussaint, G.: Computational geometric aspects of rhythm, melody, and voice-leading. Comput. Geom. Theory Appl. 43(1), 2–22 (2010)
Tzanetakis, G., Benning, M.S., Ness, S.R., Minifie, D., Livingston, N.: Assistive music browsing using self-organizing maps. In: Proceedings of the 2nd International Conference on Pervasive Technologies Related to Assistive Environments, pp. 3:1–3:7. PETRA 2009, NY, USA. ACM, New York (2009)
Wai Man, S., Wonga, M.H.: A graph-theoretical approach for pattern matching in post-tonal music analysis (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Blot, G., Saurel, P., Rousseaux, F. (2017). Melody and Rhythm Through Network Visualization Techniques. In: Aramaki, M., Kronland-Martinet, R., Ystad, S. (eds) Bridging People and Sound. CMMR 2016. Lecture Notes in Computer Science(), vol 10525. Springer, Cham. https://doi.org/10.1007/978-3-319-67738-5_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-67738-5_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67737-8
Online ISBN: 978-3-319-67738-5
eBook Packages: Computer ScienceComputer Science (R0)