Skip to main content

Melody and Rhythm Through Network Visualization Techniques

  • Conference paper
  • First Online:
Bridging People and Sound (CMMR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10525))

Included in the following conference series:

  • 1022 Accesses

Abstract

Halfway between music analysis and graph visualization, we propose tonal pitch representations from the chromatic scale. On the first part of the experiment, a 12-node graph is connected as a Rhythm Network and visualized with a Circular Layout, commonly known as Pitch constellation. This particular graph topology focuses on node structure and gives strength to weak edges. At this occasion, we unveil the Singularity Threshold, giving an opportunity to isolate structure from singular parts of melodies. Where usual Pitch constellations focus on chords, we focus on successive pitch intervals. On the second part, we propose a rhythm representation using a Force-Directed layout. In addition to structural information, our second technique shows proximal and peripheral elements. This experiment features 6 melodies that we propose to visualize using Gephi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.fourmilab.ch/webtools/midicsv/.

  2. 2.

    http://www.gblot.com/BLOTCMMR2016.zip.

  3. 3.

    https://marketplace.gephi.org/plugin/circular-layout.

  4. 4.

    http://www.linktodata.

  5. 5.

    http://www.link.cs.cmu.edu/melisma/.

References

  1. Adamic, L., Glance, N.: The political blogosphere and the 2004 US election: divided they blog. In: Proceedings of the 3rd International workshop on Link discovery, pp. 36–43 (2005)

    Google Scholar 

  2. Association, T.I.M.: Standard midi-file format spec. 1(1) (2003)

    Google Scholar 

  3. Bigo, L., Andreatta, M., Giavitto, J.-L., Michel, O., Spicher, A.: Computation and visualization of musical structures in chord-based simplicial complexes. In: Yust, J., Wild, J., Burgoyne, J.A. (eds.) MCM 2013. LNCS (LNAI), vol. 7937, pp. 38–51. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39357-0_3

    Chapter  Google Scholar 

  4. Blot, G., Fouchal, H., Rousseaux, F., Saurel, P.: An experimentation of vanets for traffic management. In: IEEE International Conference on Communications. IEEE, Kuala Lumpur, Malaysia, May 2016

    Google Scholar 

  5. Blot, G., Rousseaux, F., Saurel, P.: Pattern discovery in e-learning courses: a time based approach. In: CODIT14 2nd International Conference on Control, Decision and Information Technologies. IEEE, Metz, France, November 2014

    Google Scholar 

  6. Blot, G., Saurel, P., Rousseaux, F.: Recommender engines under the influence of popularity. In: Benyoucef, M., Weiss, M., Mili, H. (eds.) MCETECH 2015. LNBIP, vol. 209, pp. 138–152. Springer, Cham (2015). doi:10.1007/978-3-319-17957-5_9

    Google Scholar 

  7. Boitmanis, K., Brandes, U., Pich, C.: Visualizing internet evolution on the autonomous systems level. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 365–376. Springer, Heidelberg (2008). doi:10.1007/978-3-540-77537-9_36. http://dl.acm.org/citation.cfm?id=1784907.1784945

    Chapter  Google Scholar 

  8. McCartin, B.J.: Prelude to musical geometry (1998)

    Google Scholar 

  9. Krumhansl, C.L.: A key-finding algorithm based on tonal hierarchies. Oxford University Press, New York (1990)

    Google Scholar 

  10. Ching-Hua, C., Chew, S.E.: Polyphonic audio key finding using the spiral array ceg algorithm. In: ICME, pp. 21–24. IEE, July 2005

    Google Scholar 

  11. Craig, S.: Visual hierarchical key analysis. In: Computers in Entertainment (CIE) - Theoretical and Practical Computer Applications in Entertainment, vol. 3, pp. 1–19. ACM, New York, NY, USA, October 2005

    Google Scholar 

  12. David, R.: Geometry and harmony. In: 8th Annual international conference of bridges: Mathematical Connections in Art, Music, and Science, pp. 67–72. Alberta, August 2005

    Google Scholar 

  13. David, T.: The Cognition of Basic Musical Structures. MIT Press, Cambridge (2001). p. 404

    Google Scholar 

  14. Temperley, D.: A Bayesian approach to key-finding. In: Anagnostopoulou, C., Ferrand, M., Smaill, A. (eds.) ICMAI 2002. LNCS (LNAI), vol. 2445, pp. 195–206. Springer, Heidelberg (2002). doi:10.1007/3-540-45722-4_18

    Chapter  Google Scholar 

  15. Ernest, K.: Uber neue Musik (1937)

    Google Scholar 

  16. Fowler, J.H., Christakis, N.A.: Dynamic spread of happiness in a large social network: longitudinal analysis over 20 years in the framingham heart study (September 2008)

    Google Scholar 

  17. Fred, L.: Tonal Pitch Space. Oxford University Press, Oxford (2001)

    Google Scholar 

  18. Jacomy, M., Venturini, T., Heymann, S., Bastian, M.: Forceatlas2, a continuous graph layout algorithm for handy network visualization designed for the gephi software, June 2014

    Google Scholar 

  19. Burgoyne, J.A., Saul, L.K.: Visualization of low dimensional structure in tonal pitch space. In: Proceedings of the 2005 International Computer Music Conference. Barcelona, Spain (September 2005)

    Google Scholar 

  20. Rockwell, J.: Birdcage flights: a perspective on inter-cardinality voice leading (2009)

    Google Scholar 

  21. Granovetter, M.S.: The strength of weak ties (1973)

    Google Scholar 

  22. Masaya, Y.: Masaya Music, New York, USA, May 2006

    Google Scholar 

  23. Matthias, R., Thomas, R., Pierre, H.: Improvements of symbolic key finding methods. In: International Computer Music Conference (2008)

    Google Scholar 

  24. 1.2draft Primer, G.: Gexf working group (March 2012)

    Google Scholar 

  25. Soren Tjagvad, M., Gerhald, W.: Key-finding with interval profiles. In: International Computer Music Conference, August 2007

    Google Scholar 

  26. Toussaint, G.: Computational geometric aspects of rhythm, melody, and voice-leading. Comput. Geom. Theory Appl. 43(1), 2–22 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tzanetakis, G., Benning, M.S., Ness, S.R., Minifie, D., Livingston, N.: Assistive music browsing using self-organizing maps. In: Proceedings of the 2nd International Conference on Pervasive Technologies Related to Assistive Environments, pp. 3:1–3:7. PETRA 2009, NY, USA. ACM, New York (2009)

    Google Scholar 

  28. Wai Man, S., Wonga, M.H.: A graph-theoretical approach for pattern matching in post-tonal music analysis (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Blot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Blot, G., Saurel, P., Rousseaux, F. (2017). Melody and Rhythm Through Network Visualization Techniques. In: Aramaki, M., Kronland-Martinet, R., Ystad, S. (eds) Bridging People and Sound. CMMR 2016. Lecture Notes in Computer Science(), vol 10525. Springer, Cham. https://doi.org/10.1007/978-3-319-67738-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67738-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67737-8

  • Online ISBN: 978-3-319-67738-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics