Skip to main content

Robust Face Hallucination via Locality-Constrained Nuclear Norm Regularized Regression

  • Conference paper
  • First Online:
Intelligence Science and Big Data Engineering (IScIDE 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10559))

  • 2305 Accesses

Abstract

The performance of traditional face recognition approaches is sharply reduced when facing a low-resolution (LR) probe face image. Various face hallucination methods have been proposed in the past decade to obtain much more facial details. The basic idea of face hallucination is to desire a high-resolution (HR) face image from an observed LR one with the help of a set of training examples. In this paper, we propose a locality-constrained nuclear norm regularized regression (LCNNR) model for face hallucination task and use the alternating direction method of multipliers to solve it. LCNNR attempts to directly use the image matrix to compute the representation coefficients to maintain the essential structural information. Moreover, a locality constraint is also enforced to preserve the locality and the sparsity simultaneously. Experiments carried out on the benchmark FEI face database show that LCNNR outperforms some state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jain, A.K., Ross, A., Prabhakar, S.: An introduction to biometric recognition. IEEE Trans. Circuits Syst. Video Technol. 14(1), 4–20 (2004)

    Article  Google Scholar 

  2. Gao, G., Yang, J., Wu, S., Jing, X., Yue, D.: Bayesian sample steered discriminative regression for biometric image classification. Appl. Soft Comput. 37, 48–59 (2015)

    Article  Google Scholar 

  3. Jing, X., Wu, F., Zhu, X., Dong, X., Ma, F., Li, Z.: Nulti-spectral low-rank structured dictionary learning for face recognition. Pattern Recogn. 59, 14–25 (2016)

    Article  Google Scholar 

  4. Baker, S., Kanade, T.: Limits on super-resolution and how to break them. IEEE Trans. Pattern Anal. Mach. Intell. 24(9), 1167–1183 (2002)

    Article  Google Scholar 

  5. Wang, X., Tang, X.: Hallucinating face by eigen transformation. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 35(3), 425–434 (2005)

    Article  Google Scholar 

  6. An, L., Bhanu, B.: Face image super-resolution using 2D CCA. Sig. Process. 103, 184–194 (2014)

    Article  Google Scholar 

  7. Chang, H., Yeung, D.-Y., Xiong, Y.: Super-resolution through neighbor embedding. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1275–1282 (2004)

    Google Scholar 

  8. Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19(11), 2861–2873 (2010)

    Article  MathSciNet  Google Scholar 

  9. Gao, G., Yang, J.: A novel sparse representation based framework for face image super-resolution. Neurocomputing 134, 92–99 (2014)

    Article  Google Scholar 

  10. Ma, X., Zhang, J., Qi, C.: Hallucinating face by position-patch. Pattern Recogn. 43(6), 2224–2236 (2010)

    Article  Google Scholar 

  11. Jung, C., Jiao, L., Liu, B., Gong, M.: Position-patch based face hallucination using convex optimization. IEEE Sig. Process. Lett. 18(6), 367–370 (2011)

    Article  Google Scholar 

  12. Wang, Z., Hu, R., Wang, S., Jiang, J.: Face hallucination via weighted adaptive sparse regularization. IEEE Trans. Circuits Syst. Video Technol. 24(5), 802–813 (2014)

    Article  Google Scholar 

  13. Jiang, J., Hu, R., Wang, Z., Han, Z.: Noise robust face hallucination via locality-constrained representation. IEEE Trans. Multimedia 16(5), 1268–1281 (2014)

    Article  Google Scholar 

  14. Yang, J., Luo, L., Qian, J., Tai, Y., Zhang, F., Xu, Y.: Nuclear norm based matrix regression with applications to face recognition with occlusion and illumination changes. IEEE Trans. Pattern Anal. Mach. Intell. 39(1), 156–171 (2017)

    Article  Google Scholar 

  15. Gao, G., Yang, J., Jing, X.-Y., Shen, F., Yang, W., Yue, D.: Learning robust and discriminative low-rank representations for face recognition with occlusion. Pattern Recogn. 66, 129–143 (2017)

    Article  Google Scholar 

  16. Cai, J.F., Candes, E.J., Shen, Z.W.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Thomaz, C.E., Giraldi, G.A.: A new ranking method for principal components analysis and its application to face image analysis. Image Vis. Comput. 28(6), 902–913 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangwei Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Gao, G., Yang, J., Huang, P., Li, Z., Yue, D. (2017). Robust Face Hallucination via Locality-Constrained Nuclear Norm Regularized Regression. In: Sun, Y., Lu, H., Zhang, L., Yang, J., Huang, H. (eds) Intelligence Science and Big Data Engineering. IScIDE 2017. Lecture Notes in Computer Science(), vol 10559. Springer, Cham. https://doi.org/10.1007/978-3-319-67777-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67777-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67776-7

  • Online ISBN: 978-3-319-67777-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics