Skip to main content

A New Adaptive Learning Algorithm and Its Application to Online Malware Detection

  • Conference paper
  • First Online:
Discovery Science (DS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10558))

Included in the following conference series:

Abstract

Nowadays, the number of new malware samples discovered every day is in millions, which undermines the effectiveness of the traditional signature-based approach towards malware detection. To address this problem, machine learning methods have become an attractive and almost imperative solution. In most of the previous work, the application of machine learning to this problem is batch learning. Due to its fixed setting during the learning phase, batch learning often results in low detection accuracy when encountered zero-day samples with obfuscated appearance or unseen behavior. Therefore, in this paper, we propose the FTRL-DP online algorithm to address the problem of malware detection under concept drift when the behavior of malware changes over time. The experimental results show that online learning outperforms batch learning in all settings, either with or without retrainings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., et al.: Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)

  2. Allix, K., Bissyandé, T.F., Klein, J., Le Traon, Y.: Are your training datasets yet relevant? In: Piessens, F., Caballero, J., Bielova, N. (eds.) ESSoS 2015. LNCS, vol. 8978, pp. 51–67. Springer, Cham (2015). doi:10.1007/978-3-319-15618-7_5

    Google Scholar 

  3. Bekerman, D., Shapira, B., Rokach, L., Bar, A.: Unknown malware detection using network traffic classification. In: IEEE Conference on Communications and Network Security (CNS), pp. 134–142 (2015)

    Google Scholar 

  4. Feldman, R.: Techniques and applications for sentiment analysis. Commun. ACM 4, 82–89 (2013)

    Article  Google Scholar 

  5. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. (CSUR) 46(4), 44 (2014)

    Article  MATH  Google Scholar 

  6. Guarnieri, C., Schloesser, M., Bremer, J., Tanasi, A.: Cuckoo sandbox-open source automated malware analysis. Black Hat USA (2013)

    Google Scholar 

  7. Iliopoulos, D., Adami, C., Szor, P.: Darwin inside the machines: malware evolution and the consequences for computer security. arXiv:1111.2503 [cs, q-bio] (2011)

  8. Kantchelian, A., Tschantz, M.C., Afroz, S., Miller, B., Shankar, V., Bachwani, R., Joseph, A.D., Tygar, J.D.: Better malware ground truth: Techniques for weighting anti-virus vendor labels. In: Proceedings of the 8th ACM Workshop on Artificial Intelligence and Security, pp. 45–56. ACM (2015)

    Google Scholar 

  9. Korkmaz, Y.: Automated detection and classification of malware used in targeted attacks via machine learning. Ph.D. thesis, Bilkent University (2015)

    Google Scholar 

  10. Makandar, A., Patrot, A.: Malware analysis and classification using artificial neural network. In: 2015 International Conference on Trends in Automation, Communications and Computing Technology (I-TACT 2015), vol. 01, pp. 1–6 (2015)

    Google Scholar 

  11. McMahan, H.B.: A survey of algorithms and analysis for adaptive online learning. arXiv preprint arXiv:1403.3465 (2014)

  12. McMahan, H.B., Holt, G., Sculley, D., Young, M., Ebner, D., Grady, J., Nie, L., Phillips, T., Davydov, E., Golovin, D., et al.: Ad click prediction: a view from the trenches. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1222–1230. ACM (2013)

    Google Scholar 

  13. Mirkovic, J., Benzel, T.: Deterlab testbed for cybersecurity research and education. J. Comput. Sci. Coll. 28(4), 163–163 (2013)

    Google Scholar 

  14. Mohaisen, A., Alrawi, O., Mohaisen, M.: AMAL: high-fidelity, behavior-based automated malware analysis and classification. Comput. Secur. 52, 251–266 (2015)

    Article  Google Scholar 

  15. Narayanan, A., Yang, L., Chen, L., Jinliang, L.: Adaptive and scalable android malware detection through online learning. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 2484–2491. IEEE (2016)

    Google Scholar 

  16. Nari, S., Ghorbani, A.A.: Automated malware classification based on network behavior. In: 2013 International Conference on Computing, Networking and Communications (ICNC), pp. 642–647 (2013)

    Google Scholar 

  17. Norouzi, M., Souri, A., Samad Zamini, M.: A data mining classification approach for behavioral malware detection. J. Comput. Netw. Commun. 2016, 1–9 (2016)

    Article  Google Scholar 

  18. Rafique, M.Z., Chen, P., Huygens, C., Joosen, W.: Evolutionary algorithms for classification of malware families through different network behaviors. In: Proceedings of the 2014 Conference on Genetic and Evolutionary Computation, pp. 1167–1174. ACM (2014)

    Google Scholar 

  19. Saini, A., Gandotra, E., Bansal, D., Sofat, S.: Classification of PE files using static analysis. In: Proceedings of the 7th International Conference on Security of Information and Networks, p. 429. ACM (2014)

    Google Scholar 

  20. Saxe, J., Berlin, K.: Deep neural network based malware detection using two dimensional binary program features. In: 10th International Conference on Malicious and Unwanted Software (MALWARE), pp. 11–20 (2015)

    Google Scholar 

  21. Shalev-Shwartz, S.: Online learning and online convex optimization. Found. Trends Mach. Learn. 4(2), 107–194 (2011)

    Article  MATH  Google Scholar 

  22. Valenti, R., Sebe, N., Gevers, T., Cohen, I.: Machine learning techniques for face analysis. In: Cord, M., Cunningham, P. (eds.) Machine Learning Techniques for Multimedia, pp. 159–187. Springer, Heidelberg (2008). doi:10.1007/978-3-540-75171-7_7

    Chapter  Google Scholar 

  23. You, I., Yim, K.: Malware obfuscation techniques: a brief survey. In: International Conference on Broadband, Wireless Computing, Communication and Applications (BWCCA), pp. 297–300 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ngoc Anh Huynh .

Editor information

Editors and Affiliations

A Proof of Theorem 1

A Proof of Theorem 1

Proof

To remind the optimization objective of FTRL-DP:

$$w_{t+1} = \mathop {\mathrm {\arg \!\min }}_w g_{1:t}^\top w + \lambda _1\Vert w\Vert _1 + \frac{1}{2}\lambda _2\Vert w\Vert _2^2 + \frac{1}{2}\lambda _p \sum _{s=1}^{t}\gamma ^{t-s}\Vert w-w_s\Vert _2^2$$

Omitting the constant term \(\frac{1}{2}\lambda _p \sum _{s=1}^{t}\gamma ^{t-s}\Vert w_s\Vert _2^2\), we have:

$$\begin{aligned} w_{t+1} = \mathop {\mathrm {\arg \!\min }}_w z_t^\top w + \lambda _1\Vert w\Vert _1 + \frac{1}{2}\big (\lambda _2 + \lambda _p r_t\big )\Vert w\Vert _2^2 \end{aligned}$$
(9)

In Eq. 9, \(z_t = g_{1:t}^\top - \lambda _p\sum _{s=1}^{t}\gamma ^{t-s}w_s^\top \) and \(r_t = \frac{1-\gamma ^t}{1-\gamma }\). Each component of w contribute independently to the objective function of 9 hence can be solve separately:

$$\begin{aligned} w_{t+1,i} = \mathop {\mathrm {\arg \!\min }}_{w_i} z_{t,i} w_i + \lambda _1\Vert w_i\Vert _1 + \frac{1}{2}\big (\lambda _2 + \lambda _p r_t\big )\Vert w_i\Vert _2^2 \end{aligned}$$
(10)

Note that \(w_i\) in 10 refers to the \(i^{\text {th}}\) component of w. Let \(f(w_i) = z_{t,i} w_i + \lambda _1\Vert w_i\Vert _1 + \frac{1}{2}\big (\lambda _2 + \lambda _p r_t\big )\Vert w_i\Vert _2^2\). There are two cases:

  • If \(\Vert z_{t,i}\Vert _1 \le \lambda _1\), we have:

    $$f(w_i) \ge -\Vert z_{t,i} w_i\Vert _1 + \lambda _1\Vert w_i\Vert _1 + \frac{1}{2}\big (\lambda _2 + \lambda _p r_t\big )\Vert w_i\Vert _2^2$$
    $$f(w_i) \ge -\lambda _1\Vert w_i\Vert _1 + \lambda _1\Vert w_i\Vert _1 + \frac{1}{2}\big (\lambda _2 + \lambda _p r_t\big )\Vert w_i\Vert _2^2=\frac{1}{2}\big (\lambda _2 + \lambda _p r_t\big )\Vert w_i\Vert _2^2 \ge 0$$

    \(f(w_i)\) achieves the minimum at \(w_i = 0\)

  • If \(\Vert z_{t,i}\Vert _1 \ge \lambda _1\), \(z_{t,i}\) and \(w_i\) must have opposite signs at the minimum of \(f(w_i)\) as otherwise \(w_i\) can always have sign flipped to further reduce \(f_i(w_i)\). Therefore, it is equivalent to solving:

    $$w_{t+1,i} = \mathop {\mathrm {\arg \!\min }}_{w_i} z_{t,i} w_i - \mathrm {sign}(z_{t,i})\lambda _1\Vert w_i\Vert _1 + \frac{1}{2}\big (\lambda _2 + \lambda _p r_t\big )\Vert w_i\Vert _2^2$$

    which achieves minimum at zero gradient or \(w_i = -\frac{z_{t,i} - \mathrm {sign}(z_{t,i})\lambda _1}{\lambda _2 + \lambda _p r_t}\) This concludes the proof.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Huynh, N.A., Ng, W.K., Ariyapala, K. (2017). A New Adaptive Learning Algorithm and Its Application to Online Malware Detection. In: Yamamoto, A., Kida, T., Uno, T., Kuboyama, T. (eds) Discovery Science. DS 2017. Lecture Notes in Computer Science(), vol 10558. Springer, Cham. https://doi.org/10.1007/978-3-319-67786-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67786-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67785-9

  • Online ISBN: 978-3-319-67786-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics