Skip to main content

Authentication Based Elliptic Curves Digital Signature for ZigBee Networks

  • Conference paper
  • First Online:
Mobile, Secure, and Programmable Networking (MSPN 2017)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 10566))

Abstract

Elliptic Curve Cryptography (ECC) is emerging as an attractive public-key cryptosystem, in particular for internet of things. Compared to the well known cryptosystems such as RSA, ECC offers equivalent security with smaller key sizes. In this paper, we propose an authentication mechanism based on ECDSA (Elliptic curve digital signature algorithm) signature for ZigBee networks. Our system guarantees an end to end authentication between communicating entities. Security analysis and performance evaluations show that our new mechanism is resource efficient and it can resist several kinds of attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Digital Signature Standard (DSS), National Institute of Standards and Technology (NIST) (2013)

    Google Scholar 

  2. Wang, K., et al.: Strategic anti-eavesdropping game for physical layer security in wireless cooperative networks. IEEE Trans. Veh. Technol. PP(99), doi:10.1109/TVT.2017.2703305. IEEE Vehicular Technology Society

  3. Xu, J., et al.: Proactive eavesdropping via cognitive jamming in fading channels. IEEE Trans. Wireless Commun. 16(5), 2790–2806 (2017). doi:10.1109/TWC.2017.2666138, Print ISSN 1536-1276, IEEE Communications Society IEEE Signal Processing Society

  4. Saqib, N., et al.: Key exchange protocol for WSN resilient against man in the middle attack. In: IEEE International Conference on Advances in Computer Applications (ICACA), 24 October 2016, Coimbatore, India. IEEE (2016). INSPEC Accession Number: 16776896, doi:10.1109/ICACA.2016.7887963

  5. Eigner, O., Kreimel, P., Tavolato, P.: Detection of man-in-the-middle attacks on industrial control networks. In: 2016 International Conference on Software Security and Assurance (ICSSA), 24–25 August 2016, St. Polten, Austria, NSPEC Accession Number: 16693204. IEEE (2016). doi: 10.1109/ICSSA.2016.19

  6. Baalbaki, B.A.I., Pacheco, J., Tunc, C., AI-Nashif, Y.: Anomaly Behavior Analysis System for ZigBee in Smart Buildings, 978-1-5090-0478-2/15/$31.00 ©2015 IEEE

    Google Scholar 

  7. http://www.zigbee.org

  8. Xu, X., Gao, Y., Zhang, W., Li, J.: Research on the Wireless Network Transmission Security Based on IEEE 802.15.4. Research (2009)

    Google Scholar 

  9. Hyncica, O., Kacz, P., Fiedler, P., Bradac, Z., Kucera, P., Vrba, R.: On security of PAN wireless systems. In: Vassiliadis, S., Wong, S., Hämäläinen, T.D. (eds.) SAMOS 2006. LNCS, vol. 4017, pp. 178–185. Springer, Heidelberg (2006). doi:10.1007/11796435_19

    Chapter  Google Scholar 

  10. Koblitz, A.H., Koblitz, N., Menezes, A.: Elliptic curve cryptography: the serpentine course of a paradigm shift. J. Numb. Theory 131, 781–814 (2011)

    Google Scholar 

  11. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48, 203 (1987). 209MATHMathSciNetCrossRef

    Google Scholar 

  12. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). doi:10.1007/3-540-39799-X_31

    Chapter  Google Scholar 

  13. Gura, N., Patel, A., Wander, A., Eberle, H., Shantz, S.C.: Comparing elliptic curve cryptography and RSA on 8-bit CPUs. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 119–132. Springer, Heidelberg (2004). doi:10.1007/978-3-540-28632-5_9

    Chapter  Google Scholar 

  14. Akhter, F.: Faster scalar multiplication algorithm to implement a secured elliptic curve cryptography system. (IJACSA) Int. J. Adv. Comput. Sci. Appl. 7(1) (2016). doi:10.14569/IJACSA.2016.070187, License: CC BY-NC-ND 4.0

  15. Kulkarni, S., Ghosh, U., Pasupuleti, H.: Considering security for ZigBee protocol using message authentication code. In: IEEE INDICON 2015, pp. 1–6 (2015). doi:10.1109/INDICON.2015.7443625

  16. Elgamal, T.: A public key Cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inform. Theory 31(4) (1985), 469–472 (1985)

    Google Scholar 

  17. Federal Information Processing Standards Publication, “Digital Signature Standard (DSS),” Gaithersburg, MD, Technical report, July 2013

    Google Scholar 

  18. Al-alak, S., Ahmed, Z., Abdullah, A., Subramiam, S.: AES and ECC mixed for ZigBee wireless sensor security. World Acad. Sci. Eng. Technol. Int. J. Electr. Comput. Energ. Electron. Commun. Eng. 5(9) (2011)

    Google Scholar 

  19. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985). doi:10.1007/3-540-39568-7_5

    Chapter  Google Scholar 

  20. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer, New York (2004)

    Google Scholar 

  21. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203–209 (1987)

    Google Scholar 

  22. https://tools.ietf.org/search/rfc4492#section-6

  23. http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf

  24. https://tools.ietf.org/html/rfc6234

  25. https://omnetpp.org

  26. https://github.com/kmackay/micro-ecc

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ouassila Hoceini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Hoceini, O., Afifi, H., Aoudjit, R. (2017). Authentication Based Elliptic Curves Digital Signature for ZigBee Networks. In: Bouzefrane, S., Banerjee, S., Sailhan, F., Boumerdassi, S., Renault, E. (eds) Mobile, Secure, and Programmable Networking. MSPN 2017. Lecture Notes in Computer Science(), vol 10566. Springer, Cham. https://doi.org/10.1007/978-3-319-67807-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67807-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67806-1

  • Online ISBN: 978-3-319-67807-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics