Abstract
Elliptic Curve Cryptography (ECC) is emerging as an attractive public-key cryptosystem, in particular for internet of things. Compared to the well known cryptosystems such as RSA, ECC offers equivalent security with smaller key sizes. In this paper, we propose an authentication mechanism based on ECDSA (Elliptic curve digital signature algorithm) signature for ZigBee networks. Our system guarantees an end to end authentication between communicating entities. Security analysis and performance evaluations show that our new mechanism is resource efficient and it can resist several kinds of attacks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Digital Signature Standard (DSS), National Institute of Standards and Technology (NIST) (2013)
Wang, K., et al.: Strategic anti-eavesdropping game for physical layer security in wireless cooperative networks. IEEE Trans. Veh. Technol. PP(99), doi:10.1109/TVT.2017.2703305. IEEE Vehicular Technology Society
Xu, J., et al.: Proactive eavesdropping via cognitive jamming in fading channels. IEEE Trans. Wireless Commun. 16(5), 2790–2806 (2017). doi:10.1109/TWC.2017.2666138, Print ISSN 1536-1276, IEEE Communications Society IEEE Signal Processing Society
Saqib, N., et al.: Key exchange protocol for WSN resilient against man in the middle attack. In: IEEE International Conference on Advances in Computer Applications (ICACA), 24 October 2016, Coimbatore, India. IEEE (2016). INSPEC Accession Number: 16776896, doi:10.1109/ICACA.2016.7887963
Eigner, O., Kreimel, P., Tavolato, P.: Detection of man-in-the-middle attacks on industrial control networks. In: 2016 International Conference on Software Security and Assurance (ICSSA), 24–25 August 2016, St. Polten, Austria, NSPEC Accession Number: 16693204. IEEE (2016). doi: 10.1109/ICSSA.2016.19
Baalbaki, B.A.I., Pacheco, J., Tunc, C., AI-Nashif, Y.: Anomaly Behavior Analysis System for ZigBee in Smart Buildings, 978-1-5090-0478-2/15/$31.00 ©2015 IEEE
Xu, X., Gao, Y., Zhang, W., Li, J.: Research on the Wireless Network Transmission Security Based on IEEE 802.15.4. Research (2009)
Hyncica, O., Kacz, P., Fiedler, P., Bradac, Z., Kucera, P., Vrba, R.: On security of PAN wireless systems. In: Vassiliadis, S., Wong, S., Hämäläinen, T.D. (eds.) SAMOS 2006. LNCS, vol. 4017, pp. 178–185. Springer, Heidelberg (2006). doi:10.1007/11796435_19
Koblitz, A.H., Koblitz, N., Menezes, A.: Elliptic curve cryptography: the serpentine course of a paradigm shift. J. Numb. Theory 131, 781–814 (2011)
Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48, 203 (1987). 209MATHMathSciNetCrossRef
Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). doi:10.1007/3-540-39799-X_31
Gura, N., Patel, A., Wander, A., Eberle, H., Shantz, S.C.: Comparing elliptic curve cryptography and RSA on 8-bit CPUs. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 119–132. Springer, Heidelberg (2004). doi:10.1007/978-3-540-28632-5_9
Akhter, F.: Faster scalar multiplication algorithm to implement a secured elliptic curve cryptography system. (IJACSA) Int. J. Adv. Comput. Sci. Appl. 7(1) (2016). doi:10.14569/IJACSA.2016.070187, License: CC BY-NC-ND 4.0
Kulkarni, S., Ghosh, U., Pasupuleti, H.: Considering security for ZigBee protocol using message authentication code. In: IEEE INDICON 2015, pp. 1–6 (2015). doi:10.1109/INDICON.2015.7443625
Elgamal, T.: A public key Cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inform. Theory 31(4) (1985), 469–472 (1985)
Federal Information Processing Standards Publication, “Digital Signature Standard (DSS),” Gaithersburg, MD, Technical report, July 2013
Al-alak, S., Ahmed, Z., Abdullah, A., Subramiam, S.: AES and ECC mixed for ZigBee wireless sensor security. World Acad. Sci. Eng. Technol. Int. J. Electr. Comput. Energ. Electron. Commun. Eng. 5(9) (2011)
Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985). doi:10.1007/3-540-39568-7_5
Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer, New York (2004)
Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203–209 (1987)
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Hoceini, O., Afifi, H., Aoudjit, R. (2017). Authentication Based Elliptic Curves Digital Signature for ZigBee Networks. In: Bouzefrane, S., Banerjee, S., Sailhan, F., Boumerdassi, S., Renault, E. (eds) Mobile, Secure, and Programmable Networking. MSPN 2017. Lecture Notes in Computer Science(), vol 10566. Springer, Cham. https://doi.org/10.1007/978-3-319-67807-8_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-67807-8_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67806-1
Online ISBN: 978-3-319-67807-8
eBook Packages: Computer ScienceComputer Science (R0)