Abstract
We propose a new definition for privacy, called \(\delta \)-privacy, for privacy preserving data mining. The intuition of this work is, after obtaining a result from a data mining method, an adversary has better ability in discovering data providers’ privacy; if this improvement is large, the method, which generated the response, is not privacy considerate. \(\delta \)-privacy requires that no adversary could improve more than \(\delta \). This definition can be used to assess the risk of privacy leak in any data mining methods, in particular, we show its relations to differential privacy and data anonymity, the two major evaluation methods. We also provide a quantitative analysis on the tradeoff between privacy and utility, rigorously prove that the information gains of any \(\delta \)-private methods do not exceed \(\delta \). Under the framework of \(\delta \)-privacy, it is able to design a pricing mechanism for privacy-utility trading system, which is one of our major future works.
This work was done while this author was studying in The Ohio State University.
Similar content being viewed by others
Notes
- 1.
If f is a one-way function, then given f(x), it is hard to compute an \(x'\) such that \(f(x') = f(x)\). But by definition of \(\mathsf {pub}\), given \(\mathsf {pub}(r)\), it is not hard to find a \(r'\in \mathcal {F}\) such that \(\mathsf {pub}(r') = \mathsf {pub}(r)\), therefore, \(\mathsf {pub}\) is not a one-way function. See Chap. 6 of [5] or Chap. 6 of [12] for rigorous definition of one-way functions and hardcore predicates.
References
Agrawal, R., Srikant, R.: Privacy-preserving data mining. SIGMOD Rec. 29(2), 439–450 (2000). http://doi.acm.org/10.1145/335191.335438
Brenner, H., Nissim, K.: Impossibility of differentially private universally optimal mechanisms. In: FOCS, pp. 71–80. IEEE Computer Society (2010)
Brickell, J., Shmatikov, V.: The cost of privacy: destruction of data-mining utility in anonymized data publishing. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2008, pp. 70–78. ACM, New York (2008)
Cormode, G., Procopiuc, C., Shen, E., Srivastava, D., Yu, T.: Empirical privacy and empirical utility of anonymized data. In: 2013 IEEE 29th International Conference on Data Engineering Workshops (ICDEW), pp. 77–82, April 2013
Delfs, H., Knebl, H.: Introduction to Cryptography - Principles and Applications. Information Security and Cryptography. Springer, Heidelberg (2007)
Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008). doi:10.1007/978-3-540-79228-4_1
Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006). doi:10.1007/11681878_14
Dwork, C., Pottenger, R.: Toward practicing privacy. J. Am. Med. Inform. Assoc. 20(1), 102–108 (2013). http://jamia.bmj.com/content/20/1/102.abstract
Ganta, S.R., Kasiviswanathan, S.P., Smith, A.: Composition attacks and auxiliary information in data privacy. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2008, pp. 265–273. ACM, NY, USA (2008). http://doi.acm.org/10.1145/1401890.1401926
Ghosh, A., Roughgarden, T., Sundararajan, M.: Universally utility-maximizing privacy mechanisms. In: Proceedings of the Forty-first Annual ACM Symposium on Theory of Computing, STOC 2009, pp. 351–360. ACM, NY, USA (2009). http://doi.acm.org/10.1145/1536414.1536464
Gupte, M., Sundararajan, M.: Universally optimal privacy mechanisms for minimax agents. In: Proceedings of the Twenty-ninth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2010, pp. 135–146. ACM, NY, USA (2010). http://doi.acm.org/10.1145/1807085.1807105
Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman & Hall/Crc Cryptography and Network Security Series. Chapman & Hall/CRC, Boca Raton (2007)
Li, N., Li, T.: t-closeness: Privacy beyond k-anonymity and -diversity. In: Proceedings of IEEE 23rd International Conference on Data Engineering (ICDE 2007) (2007)
Li, T., Li, N.: On the tradeoff between privacy and utility in data publishing. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’09, pp. 517–526. ACM, NY, USA (2009). http://doi.acm.org/10.1145/1557019.1557079
Lin, J.: Divergence measures based on the shannon entropy. IEEE Trans. Inform. Theory 37(1), 145–151 (1991)
Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 36–54. Springer, Heidelberg (2000). doi:10.1007/3-540-44598-6_3
Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: L-diversity: privacy beyond k-anonymity. In: Proceedings of the 22nd International Conference on Data Engineering, ICDE 2006, p. 24 (2006)
McSherry, F., Mironov, I.: Differentially private recommender systems: Building privacy into the net. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2009, pp. 627–636. ACM, NY, USA (2009). http://doi.acm.org/10.1145/1557019.1557090
McSherry, F.D.: Privacy integrated queries: an extensible platform for privacy-preserving data analysis. In: Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data, SIGMOD 2009, pp. 19–30. ACM, NY, USA (2009). http://doi.acm.org/10.1145/1559845.1559850
Parra-Arnau, J., Rebollo-Monedero, D., Forn, J.: Measuring the privacy of user profiles in personalized information systems. Future Gener. Comput. Syst. 33, 53–63 (2014). http://www.sciencedirect.com/science/article/pii/S0167739X1300006X, special Section on Applications of Intelligent Data and Knowledge Processing Technologies; Guest Editor: Dominik lzak
Peters, F., Menzies, T., Gong, L., Zhang, H.: Balancing privacy and utility in cross-company defect prediction. IEEE Trans. Softw. Eng. 39(8), 1054–1068 (2013)
Rebollo-Monedero, D., Parra-Arnau, J., Diaz, C., Forn, J.: On the measurement of privacy as an attackers estimation error. Int. J. Inf. Secur. 12(2), 129–149 (2013). http://dx.doi.org/10.1007/s10207-012-0182-5
Sweeney, L.: K-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 10(5), 557–570 (2002). http://dx.doi.org/10.1142/S0218488502001648
Venkatasubramanian, S.: Measures of anonymity. In: Aggarwal, C.C., Yu, P.S. (eds.) Privacy-Preserving Data Mining. ADBS, vol. 34. Springer, Boston (2008). doi:10.1007/978-0-387-70992-5_4
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Li, Z., Lai, T.H. (2017). \(\delta \)-privacy: Bounding Privacy Leaks in Privacy Preserving Data Mining. In: Garcia-Alfaro, J., Navarro-Arribas, G., Hartenstein, H., Herrera-JoancomartĂ, J. (eds) Data Privacy Management, Cryptocurrencies and Blockchain Technology. DPM CBT 2017 2017. Lecture Notes in Computer Science(), vol 10436. Springer, Cham. https://doi.org/10.1007/978-3-319-67816-0_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-67816-0_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67815-3
Online ISBN: 978-3-319-67816-0
eBook Packages: Computer ScienceComputer Science (R0)