Abstract
Favorite target of mobile malware, Android operating system can now rely on numerous tools, instrumentations and sandbox environments to fight back the malware threat. Sandboxing is a popular dynamic approach to detect malware, where an application is submitted to a plethora of tests in order to determine the presence of malicious behavior. Such existing sandboxes usually performed analysis on a malware sample once, given the tremendous amount of applications to analyze. In order to further study what trigger malware behavior, we decided to submit a malware sample multiple times to our sandbox, each time with slightly different experiment parameters, such as level of user simulation, the number of user actions performed, and the network configuration. Our results show that a proper configuration of these parameters will yield more information about the sample under study.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
All IP traffic other than DNS queries is sinkholed to an IP not on the network.
- 7.
All IP traffic other than DNS queries is sinkholed to an IP for which no ports are open but fake TCP SynAck packets are sent back in response to any TPC Syn (thus properly completing the 3-way handshake).
References
PulseSecure: 2015 Mobile Threat Report. Technical report, Pulse Secure Mobile Threat Center (2015)
Blasing, T., Batyuk, L., Schmidt, A.D., Camtepe, S.A., Albayrak, S.: An android application sandbox system for suspicious software detection. In: Proceedings of the 5th International Conference of Malicious and Unwanted Software, pp. 56–62 (2010)
Boileau, C., Gagnon, F., Poisson, J., Frenette, S., Mejri, M.: A comparative study of android malware behavior in different contexts. In: Proceedings of the 13th International Joint Conference on e-Business and Telecommunications, vol. 1, pp. 47–54. DCNET (2016)
Dunham, K., Hartman, S., Morales, J.A., Quintans, M., Strazzere, T.: Android Malware and Analysis. Auerbach Publications, Boston (2014)
Bayer, U., Habibi, I., Balzarotti, D., Kirda, E., Kruegel, C.: A view on current malware behaviors. In: LEET (2009)
Bayer, U., Kruegel, C., Kirda, E.: TTAnalyze: a tool for analyzing malware (2006)
Willems, C., Holz, T., Freiling, F.: Toward automated dynamic malware analysis using CWSandbox. IEEE Secur. Priv. 5, 32–39 (2007)
Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K.: DREBIN: effective and explainable detection of android malware in your pocket. In: Proceedings of the 2013 Network and Distributed System Security (NDSS) Symposium (2014)
Arzt, S., Rasthofer, S., Christian Fritz, E.B., Bartel, A., Klein, J., Traon, Y.L., Octeau, D., McDaniel, P.: FlowDroid: precise context, flow, field, object-sensitive and lifecyle-aware taint analysis for android apps. In: Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation, pp. 259–269 (2014)
Gonzalez, H., Stakhanova, N., Ghorbani, A.A.: DroidKin: lightweight detection of android apps similarity. In: Tian, J., Jing, J., Srivatsa, M. (eds.) SecureComm 2014. LNICST, vol. 152, pp. 436–453. Springer, Cham (2015). doi:10.1007/978-3-319-23829-6_30
Zheng, M., Sun, M.: DroidAnalytics: a signature based analytic system to collect, extract, analyze and associate android malware. In: Proceedings of 12th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), pp. 163–171 (2013)
Burguera, I., Zurutuza, U., Nadjm-Tehrani, S.: CrowDroid: behavior-based malware detection system for android. In: Proceedings of the 1st ACM Workshop on Security and Privacy in Smartphones and Mobile Devices, pp. 15–26 (2011)
Enck, W., Gilbert, P., Chun, B.G., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.N.: TaintDroid: an information-flow tracking system for realtime privacy monitoring on smartphones. ACM Trans. Comput. Syst. (TOCS) 32 (2014)
Rastogi, V., Chen, Y., Enck, W.: AppsPlayground: automatic security analysis of smartphone applications. In: Proceedings of the ACM SIGSAC Conference on Computer and Communications Security, pp. 209–220 (2013)
Zhou, Y., Wang, Z., Zhou, W., Jiang, X.: Hey, you, get off of my market: detecting malicious apps in official and alternative android markets. In: NDSS (2012)
Eder, T., Rodler, M., Vymazal, D., Zeilinger, M.: Ananas-a framework for analyzing android applications. In: 2013 Eighth International Conference on Availability, Reliability and Security (ARES), pp. 711–719. IEEE (2013)
Neugschwandtner, M., Lindorder, M., Fratantonio, Y., van der Veen, V., Platzer, C.: ANDRUBIS - 1,000,000 apps later: a view on current android malware behaviors. In: Proceedings of the 3rd International Workshop on Building Analysis Datasets and Gathering Experience Returns for Security, pp. 161–190 (2014)
Spreitzenbarth, M., Freiling, F., Echtler, F., Schreck, T., Hoffmann, J.: Mobile-sandbox: having a deeper look into android applications. In: Proceedings of the 28th Symposium on Applied Computing, pp. 1808–1815 (2013)
Reina, A., Fattori, A., Cavallaro, L.: A system call-centric analysis and stimulation technique to automatically reconstruct android malware behaviors. In: Proceedings of 6th European Workshop on Systems Security (2013)
van der Veen, V., Bos, H., Rossow, C.: Dynamic analysis of android malware. Internet & Web Technology Master thesis, VU University Amsterdam (2013)
Au, K.W.Y., Zhou, Y.F., Huang, Z., Lie, D.: PScout: analyzing the android permission specification. In: Proceedings of the 2012 ACM conference on Computer and communications security, pp. 217–228. ACM (2012)
Sasnauskas, R., Regehr, J.: Intent fuzzer: crafting intents of death. In: Proceedings of the 2014 Joint International Workshop on Dynamic Analysis (WODA) and Software and System Performance Testing, Debugging, and Analytics (PERTEA), pp. 1–5. ACM (2014)
Ye, H., Cheng, S., Zhang, L., Jiang, F.: Droidfuzzer: fuzzing the android apps with intent-filter tag. In: Proceedings of International Conference on Advances in Mobile Computing & Multimedia, p. 68. ACM (2013)
Gagnon, F., Lafrance, F., Frenette, S., Hall, S.: AVP-an android virtual playground. In: DCNET, pp. 13–20 (2014)
Gagnon, F., Poisson, J., Frenette, S., Lafrance, F., Hallé, S., Michaud, F.: Blueprints of an automated android test-bed. In: Obaidat, M.S., Holzinger, A., Filipe, J. (eds.) ICETE 2014. CCIS, vol. 554, pp. 3–25. Springer, Cham (2015). doi:10.1007/978-3-319-25915-4_1
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Boileau, C., Gagnon, F., Poisson, J., Frenette, S., Mejri, M. (2017). Towards Understanding the Role of Execution Context for Observing Malicious Behavior in Android Malware. In: Obaidat, M. (eds) E-Business and Telecommunications. ICETE 2016. Communications in Computer and Information Science, vol 764. Springer, Cham. https://doi.org/10.1007/978-3-319-67876-4_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-67876-4_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67875-7
Online ISBN: 978-3-319-67876-4
eBook Packages: Computer ScienceComputer Science (R0)