Skip to main content

SVM-MUSIC Algorithm for Spectrum Sensing in Cognitive Radio Ad-Hoc Networks

  • Conference paper
  • First Online:
Ad-hoc, Mobile, and Wireless Networks (ADHOC-NOW 2017)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 10517))

Included in the following conference series:

Abstract

Adopting accurate and efficient spectrum sensing policy is crucial in allowing cognitive radio users to be aware of the surrounding parameters related to the radio environment characteristics. Especially, in Ad hoc networks scenario, where dynamic spectrum access is highly required, since the most of the spectrum is already assigned statistically, and the unlicensed bands are becoming overcrowded. This is due to the multiplicity of wireless communication technologies that operate in those bands, and the increasing number of connected devices. In this paper, a spectrum sensing algorithm that combines the Support Vector Machines (SVM) supervised learning technique with the Multiple Signal Characterization (MUSIC) subspace method is used. Our ultimate objective is detecting the presence of primary users (technology signals) in the band of interest. The node’s receivers which make up the network collect samples from the radio environment, estimate the number of primary user signals and the corresponding carrier frequencies. Simulations are conducted to demonstrate the efficiency of the proposed SVM based algorithm in detecting the presence of primary users based on lost-detection and false alarm probabilities evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akyildiz, I., Lee, W.-Y., Chowdhury, K.: Spectrum management in cognitive radio ad hoc networks. IEEE Netw. 23, 6–12 (2009). 10.1109/MNET.2009.5191140

    Article  Google Scholar 

  2. Akyildiz, I.F., Lee, W.-Y., Chowdhury, K.R.: CRAHNs: Cognitive radio ad hoc networks. Ad Hoc Netw. 7, 810–836 (2009). doi:10.1016/j.adhoc.2009.01.001

    Article  Google Scholar 

  3. Schmidt, R.: Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34, 276–280 (1986). doi:10.1109/TAP.1986.1143830

    Article  Google Scholar 

  4. El Gonnouni, A., Martinez-Ramon, M., Rojo-Alvarez, J.L., Camps-Valls, G., Figueiras-Vidal, A.R., Christodoulou, C.G.: A support vector machine music algorithm. IEEE Trans. Antennas Propag. 60, 4901–4910 (2012). doi:10.1109/TAP.2012.2209195

    Article  MathSciNet  MATH  Google Scholar 

  5. Konishi, S., Kitagawa, G.: Biometrika Trust. 83, 875–890 (2009). doi:10.1093/biomet/81.3.425

    Article  Google Scholar 

  6. Haardt, M., Zoltowski, M.D., Mathews, C.P., Nossek, J.: 2D unitary ESPRIT for efficient 2D parameter estimation. In: 1995 International Conference Acoustics, Speech, Signal Process, vol. 3, pp. 2096–2099 (1995). doi:10.1109/ICASSP.1995.478488

  7. Capon, J.: High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE 57, 1408–1418 (1969). doi:10.1109/PROC.1969.7278

    Article  Google Scholar 

  8. Gabriel, W.F.: Spectral Analysis and Adaptive Army Superresolution Techniques aglortihm. Proc. IEEE 68, 654–666 (1978). doi:10.1109/PROC.1980.11719

    Article  Google Scholar 

  9. Ziskind, I., Wax, M.: Maximum likelihood localization of multiple sources by alternating projection. IEEE Trans. Acoust. 36, 1553–1560 (1988). doi:10.1109/29.7543

    Article  MATH  Google Scholar 

  10. Pisarenko, V.F.: Some applications of the maximum likelihood method in seismology. Geophys. J. Roy. Astron. Soc. 21, 307–322 (1970)

    Article  MATH  Google Scholar 

  11. El-Behery, I.N., Macphie, R.H.: Maximum likelihood estimation of the number, directions and strengths of point radio sources from variable baseline interferometer data. IEEE Trans. Antennas Propag. 75, 1928–1932 (1978)

    Google Scholar 

  12. Reddi, S.S.: Multiple source location-a digital approach. IEEE Trans. Aerosp. Electron. Syst. 15, 95–105 (1979)

    Article  Google Scholar 

  13. Roy, R., Kailath, T.: ESPRIT - estimation of signal parameters via rotational invaraince techniques. IEEE Trans. Acoust. 37, 984–995 (1989)

    Article  Google Scholar 

  14. Mukherjee, S., Osuna, E., Girosi, F.: Nonlinear Prediction of Chaotic Time Series Using Support Vector Machine. IEEE NNSP (1997)

    Google Scholar 

  15. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

  16. El Barrak, S., Lyhyaoui, A., El Gonnouni, A., Puliafito, A., Serrano, S.: Application of MVDR and MUSIC spectrum sensing techniques with implementation of node’s prototype for cognitive radio ad hoc networks. Presented at ICSDE 2017 (2017)

    Google Scholar 

  17. Bienvenu, G., Kopp, L.: Optimality of high resolution array processing using the eigensystem approach. IEEE Trans. Acoust. 31, 1235–1248 (1983)

    Article  Google Scholar 

  18. Ramon, M.M., Xu, N., Christodoulou, C.G.: Beamforming using support vector machines. IEEE Antennas Wirel. Propag. Lett. 4, 439–442 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumaya El Barrak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

El Barrak, S., Lyhyaoui, A., Gonnouni, A.E., Puliafito, A., Serrano, S. (2017). SVM-MUSIC Algorithm for Spectrum Sensing in Cognitive Radio Ad-Hoc Networks. In: Puliafito, A., Bruneo, D., Distefano, S., Longo, F. (eds) Ad-hoc, Mobile, and Wireless Networks. ADHOC-NOW 2017. Lecture Notes in Computer Science(), vol 10517. Springer, Cham. https://doi.org/10.1007/978-3-319-67910-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67910-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67909-9

  • Online ISBN: 978-3-319-67910-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics