Skip to main content

A Hybrid Ant-Genetic Algorithm to Solve a Real Deployment Problem: A Case Study with Experimental Validation

  • Conference paper
  • First Online:
Ad-hoc, Mobile, and Wireless Networks (ADHOC-NOW 2017)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 10517))

Included in the following conference series:

  • 1132 Accesses

Abstract

In this paper, we investigate the problem of deploying 3D nodes in a wireless sensor network. The aim is to choose the ideal 3D locations to add new nodes to an initial configuration of nodes, while optimizing a set of objectives. In this regard, our study proposes a new hybrid algorithm which stems from the ant foraging behavior and the genetics. It is based on a recent variant of the genetic algorithms (NSGA-III) and the Ant Colony Optimization algorithm. The obtained numerical results and the simulations compared with experiments prove the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Van den Bossche, A., Dalce, R., Val, T.: OpenWiNo: an open hardware and software framework for fast-prototyping in the IoT. In: Proceedings 23rd International Conference on Telecommunications, Thessaloniki, Greece, pp. 1–6, 16–18 May 2016. doi:10.1109/ICT.2016.7500490

  2. Cheng, X., Du, D.Z., Wang, L., Xu, B.: Relay sensor placement in wireless sensor networks. ACM/Springer J. Wirel. Netw. 14(3), 347–355 (2007). doi:10.1007/s11276-006-0724-8

    Article  Google Scholar 

  3. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2013). doi:10.1109/TEVC.2013.2281535

  4. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 26(1), 29–41 (1996). doi:10.1109/3477.484436

  5. Aval, K.J., Abd Razak, S.: A review on the implementation of multiobjective algorithms in wireless sensor network. World Appl. Sci. J. 19(6), 772–779. ISSN 1818-4952 (2012). doi:10.5829/idosi.wasj.2012.19.06.1398

  6. Mnasri, S., Nasri, N., Val, T.: An overview of the deployment paradigms in the wireless sensor networks. In: Proceedings International Conference on Performance Evaluation and Modeling in Wired and Wireless Networks, Tunisie, 04–07 November 2014

    Google Scholar 

  7. Qu, Y.: Wireless sensor network deployment. Ph.D. dissertation, Florida International University, Miami, Florida, USA (2013)

    Google Scholar 

  8. Matsuo, S., Sun, W., Shibata, N., Kitani, T., Ito, M.: BalloonNet: a deploying method for a three-dimensional wireless network surrounding a building. In: Proceedings of the Eighth International Conference on Broadband and Wireless Computing, Communication and Applications, pp. 120–127 (2013). doi:10.1109/BWCCA.2013.28

  9. Jiang, J.A., Wan, J.J., Zheng, X.Y., Chen, C.P., Lee, C.H., Su, L.K., Huang, W.C.: A novel weather information-based optimization algorithm for thermal sensor placement in smart grid. IEEE Trans. Smart Grid 99, 1–11 (2016). doi:10.1109/TSG.2016.2571220

  10. Sweidan, H.I., Havens, T.C.: Coverage optimization in a terrain-aware wireless sensor network. In: Proceedings of the 2016 IEEE Congress on Evolutionary Computation, Vancouver, BC, pp. 3687–3694 (2016). doi:10.1109/CEC.2016.7744256

  11. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002). doi:10.1109/4235.996017

  12. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on de-composition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007). doi:10.1109/TEVC.2007.892759

  13. Ibrahim, A., Rahnamayan, S., Martin, M.V., Deb, K.: EliteNSGA-III: an improved evolutionary many-objective optimization algorithm. In: Proceedings IEEE Congress on Evolutionary Computation, Vancouver, BC, Canada, pp. 973–982, 24–29 July 2016. doi:10.1109/CEC.2016.7743895

  14. Sim, K.M., Sun, W.H.: Ant colony optimization for routing and load-balancing: survey and new directions. IEEE Trans. Syst. Man Cybern. Part A: Syst. Humans 33(5), 560–572 (2003). doi:10.1109/TSMCA.2003.817391

  15. Shen, H.: A study of welding robot path planning application based on Genetic Ant Colony Hybrid Algorithm. In: Proceedings IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference, Xi’an, China, pp. 1743–1746, 3–5 October 2016. doi:10.1109/IMCEC.2016.7867517

  16. Huang, P., Chen, J.: Improved CCN routing based on the combination of genetic algorithm and ant colony optimization. In: Proceedings 3rd International Conference on Computer Science and Network Technology, Dalian, China, pp. 846–849, 12–13 October 2013. doi:10.1109/ICCSNT.2013.6967238

  17. While, L., Hingston, P., Barone, L., Huband, S.: A faster algorithm for calculating hypervolume. IEEE Trans. Evol. Comput. 10(1), 29–38 (2006). doi:10.1109/TEVC.2005.851275

  18. The OMNeT platform (2016). https://omnetpp.org/omnetpp. Accessed 9 June 2016

  19. The jMetal platform (2015). http://jmetal.sourceforge.net/. Accessed 2 Mar 2015

  20. The Arduino platform (2017). https://www.arduino.cc/en/main/software. Accessed 5 Jan 2017

  21. Farhad, A., Farid, S., Zia, Y., Hussain, F.B.: A delay mitigation dynamic scheduling algorithm for the IEEE 802.15.4 based WPANs. In: Proceedings International Conference on Industrial Informatics and Computer Systems, Sharjah, UAE, pp. 1–5, 13–15 March 2016. doi:10.1109/ICCSII.2016.7462430

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sami Mnasri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Mnasri, S., Nasri, N., Van Den Bossche, A., Val, T. (2017). A Hybrid Ant-Genetic Algorithm to Solve a Real Deployment Problem: A Case Study with Experimental Validation. In: Puliafito, A., Bruneo, D., Distefano, S., Longo, F. (eds) Ad-hoc, Mobile, and Wireless Networks. ADHOC-NOW 2017. Lecture Notes in Computer Science(), vol 10517. Springer, Cham. https://doi.org/10.1007/978-3-319-67910-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67910-5_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67909-9

  • Online ISBN: 978-3-319-67910-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics