Abstract
The potential of mobile offloading has contributed towards the flurry of recent research activity known as mobile cloud computing. By instrumenting the mobile applications with offloading mechanisms, a mobile device can save its energy and increase its performance. However, existing offloading mechanisms lack from efficient decision models for augmenting the mobile device with cloud resources on the fly. This problem is caused by the large amount of system’s parameters and their scattered values that need to be considered and characterized merely by the device depending on its contextual needs. Thus, the offloading process still suffers from deficiencies that do not allow a device to maximize the advantages of going cloud-aware. In this chapter, we explore the challenges and opportunities of a new kind of mobile architecture, namely evidence-aware mobile cloud architecture, which relies on crowdsensing to diagnose the optimal configuration for migrating mobile functionality to cloud. The key insight is that by using the massive parallel infrastructure of the cloud to process big data, it is possible to collect offloading evidence from large amount of devices that is later analyzed in conjunction to infer an efficient configuration to execute a smartphone app for a particular device.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Flores, H.: Service-Oriented and Evidence-aware Mobile Cloud Computing. University of Tartu, Ph.D. thesis (2015)
Olteanu, A., Ţăpuş, N.: Offloading for Mobile Devices: A Survey, UPB Scientific Bulletin (2014)
Fernando, N., Loke, S.W., Rahayu, W.: Mobile cloud computing: a survey. Fut. Gen. computer systems, 29, 1, 84 (2013)
Flores, H., Srirama, S.N.: Mobile cloud middleware. J. Syst. Soft. 92, 82–94 (2014)
Flores, H., Srirama, S.N., Paniagua, C.: A generic middleware framework for handling process intensive hybrid cloud services from mobiles. In: Proceedings of the ACM International Conference on Advances in Mobile Computing and Multimedia (MoMM 2011), (Ho chi minh, Vietnam), Dec 5–7 (2011)
Mazzucco, M., Dumas, M.: Achieving performance and availability guarantees with spot instances. In: Proceedings of the IEEE International Conference on High Performance Computing and Communications (HPCC 2011), (Banff, Canada), September 2–4 (2011)
Han, B., Hui, P., Kumar, V.A., Marathe, M.V., Shao, J., Srinivasan, A.: Mobile data offloading through opportunistic communications and social participation, IEEE Trans. Mobile Comput. 11, 5, 821 (2012)
Kaya, M., et al.: An adaptive mobile cloud computing framework using a call graph based model. J. Netw. Comput. Appl. 65, 12–35 (2016)
Gu, X., Nahrstedt, K., Messer, A., Greenberg, I., Milojicic, D.: Adaptive offloading for pervasive computing. IEEE Perv. Comput. Mag. 3(3), 66–74 (2004)
Kumar, K., Lu, Y.-H.: Cloud computing for mobile users: can offloading computation save energy? Comput. Mag. 43(4), 51–56 (2010)
Cuervo, E., Balasubramanian, A., Cho, D.-k., Wolman, A.S., Saroiu, Chandra, R., Bahl, P. : Maui: making smartphones last longer with code offload. In: Proceedings of the ACM International Conference on Mobile Systems, Applications, and Services (MobiSys 2010), (San Francisco, CA, USA), June 15–18 (2010)
Chun, B.-G., Ihm, S., Maniatis, P., Naik, M., Patti, A.: Clonecloud: elastic execution between mobile device and cloud. In: Proceedings of the ACM European Conference on Computer Systems (EuroSys 2011), (Salzburg, Austria), April 10–13 (2011)
Kosta, S., Aucinas, A., Hui, P., Mortier, R., Zhang, X.: Thinkair: dynamic resource allocation and parallel execution in the cloud for mobile code offloading. In: Proceedings of the IEEE International Conference on Computer Communications (INFOCOM 2012), (Orlando, Florida, USA.), March 25–30 (2012)
Flores, H., Srirama, S.: Adaptive code offloading for mobile cloud applications: exploiting fuzzy sets and evidence-based learning. In: Proceedings of ACM MobiSys Workshop 2013, (Taipei, Taiwan), June 25–28 (2013)
Gordon, M.S., Jamshidi, D.A., S. Mahlke, Z. M. Mao, and X. Chen, comet: code offload by migrating execution transparently. In: Proceedings of USENIX Annual Technical Conference (ATC 2012) (Boston, MA, USA), June 13–15, (2012)
Shi, C., Habak, K., Pandurangan, P., Ammar, M., Naik, M., E. Zegura: Cosmos: computation offloading as a service for mobile devices, In: Proceedings of the ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc 2014) (Philadelphia, PA, USA), August 11–14 (2014)
Flores, H., Hui, P., Tarkoma, S., Li, Y., Srirama, S., Buyya, R.: Mobile Code Offloading: From Concept to Practice and Beyond. IEEE Communications Magazine 53(3), 80–88 (2015)
Verbelen, T., Simoens, P., De Turck, F., Dhoedt, B.: Cloudlets: Bringing the Cloud to the Mobile User, in Proceedings ACM MobiSys Workshop 2012, (Low Wood Bay, Lake District, United Kingdom), June 25–29 (2012)
Bahl, P., Han, R.Y., Li, L.E., Satyanarayanan, M.: Advancing the state of mobile cloud computing. In: Proceedings of ACM MobiSys Workshop 2012 (LowWood Bay, Lake District, United Kingdom), June 25–29 (2012)
Flores, H., Srirama, S.: Mobile code offloading: should it be a local decision or global inference? In: Proceedings of the ACM International Conference on Mobile Systems, Applications, and Services (MobiSys 2013), (Taipei, Taiwan), June 25–28 (2013)
Flores, H., Sharma, R., Ferreira, D., Kostakos, V., Manner, J., Tarkoma, S., Hui, P., Li, Y., Manner, J.: Modeling mobile code acceleration in the cloud. In: Proceedings of IEEE International Conference on Distributed Computing Systems (ICDCS 2017), (Atlanta, GA, USA), June 5–8 (2017)
Skourletopoulos, G., Mavromoustakis, C.X., Mastorakis, G., Batalla, J.M., Pallis, E., Kormentzas, G.: Quantifying and evaluating the technical debt on mobile cloud-based service level. In: Proceedings of the IEEE International Conference on Communications (ICC 2016), (Kuala Lumpur, Malaysia), May 23–27 (2016)
Skourletopoulos, G., Mavromoustakis, C.X., Mastorakis, G., Batalla, J. M., Dobre, C., Panagiotakis, S., Pallis, E.: Big data and cloud computing: a survey of the state-of-the-art and research challenges. In: Advances in Mobile Cloud Computing and Big Data in the 5G Era, pp. 23–41 (2017)
Paniagua, C., et al.: Mobile Sensor Data Classification for Human Activity Recognition using MapReduce on Cloud. Procedia Comp. Sci. 10, 585–592 (2012)
Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N.: The case for VM-based cloudlets in mobile computing. IEEE Pervas. Comput. Mag. 8, 4, 14–23 (2009). Evidence-aware Mobile Cloud Architectures 19
Ra, M.R., Sheth, A., Mummert, L., Pillai, P., Wetherall, D., Govindan, R.: Odessa: enabling interactive perception applications on mobile devices. In: Proceedings of the ACM International Conference on Mobile Systems, Applications, and Services (MobiSys 2011), (Washington, DC, USA), June 28– July 1, 2011
Saarinen, A., Siekkinen, M., Xiao, Y., Nurminen, J.K., Kemppainen, M., Hui, P.: Smart-diet: offloading popular apps to save energy. ACM SIGCOMM Comput. Commun. Rev. 42(4), 297–298 (2012)
Flores, H., Sharma, R., Ferreira, D., Kostakos, V., Manner, J., Tarkoma, S., Hui, P., Li, Y.: Social-aware hybrid mobile offloading. Pervas. Mobile Comput. J. 36, 25–43 (2017)
Barbera, M.V., Kosta, S., Mei, A., Perta, V.C., Stefa, J.: Mobile offloading in the wild: findings and lessons learned through a real-life experiment with a new cloud-aware system. In: Proceedings of the IEEE International Conference on Computer Communications (INFOCOM 2014), (Toronto, Canada), April 27–May 2 (2014)
Flores, H., Sharma, R., Ferreira, D., Kostakos, V., Manner, J., Tarkoma, S., Hui, P., Li, Y.: Social-aware device-to-device communication: a contribution for edge and fog computing? In: Proceedings of the ACM International Joint Conference on Pervasive And Ubiquitous Computing (UbiComp 2016): Adjunct, (Heidelberg, Germany), September 12–16 (2016)
Oliner, A.J., Iyer, A.P., Stoica, I., Lagerspetz, E., Tarkoma, S.: Carat: collaborative energy diagnosis for mobile devices. In: Proceedings of the ACM Conference on Embedded Networked Sensor (Systems 2013), (Rome, Italy), November 11–14 (2013)
Kchaou, H., Kechaou, Z., Alimi, A.M.: Towards an offloading framework based on big data analytics in mobile cloud computing environments. Procedia Comp. Sci. 53, 292–297 (2016)
Chen, G., Kang, B.T., Kandemir, M., Vijaykrishnan, N., Irwin, M.J., Chandramouli, R.: Studying energy trade offs in offloading computation/compilation in java-enabled mobile devices. IEEE Trans. Parallel Dist. Syst. 15(9), 795–809 (2004)
Miettinen, A., Nurminen, J.K.: Energy efficiency of mobile clients in cloud computing. In: Proceedings of the USENIXWorkshop on Hot Topics in Cloud Computing (HotCloud 2010), (Boston, MA, USA), June 22–25 (2010)
Flores, H., Srirama, S.N.: Dynamic Re-configuration of mobile cloud middleware based on traffic. In: Proceedings of the IEEE International Conference on Mobile Ad hoc and Sensor Systems (MASS 2012), (Las Vegas, Nevada, USA), October 8–11 (2012)
Flores, H., Su, X., Kostakos, V., Yi Ding, A., Nurmi, P., Tarkoma, S., Hui, P., Li, Y.: Largescale offloading in the internet of things. In: Proceedings of the IEEE Annual International Conference on Pervasive Computing and Communications (PerCom 2017): Adjunct, (Kona, Big Island, Hawaii, USA), March 13–17 (2017)
Balachandran, A., Aggarwal, V., Halepovic, E., Pang, J., Seshan, S., Venkataraman, S., Yan, H.: Modeling web quality-of-experience on cellular networks. In: Proceedings of the Annual ACM International Conference on Mobile Computing and Networking (MobiCom 2014), (Maui, Hawaii, USA), September 7–11 (2014)
Satyanarayanan, M., Narayanan, D.: Multi-fidelity algorithms for interactive mobile applications. Wireless Netw. J. 7(6), 601–607 (2001)
Kristensen, M., Bouvin, N.O.: Scheduling and development support in the scavenger cyber-foraging system. Pervas. Mobile Comput. J. 6(6), 677–692 (2010)
Nawrocki, P., Reszelewski, W.: Resource usage optimization in mobile cloud computing. Comput, Commun (2016)
Silva, F.A., et al.: Mobile cloud face recognition based on smart cloud ranking. Computing. 1–25 (2016)
Schafer, D., et al.: Tasklets: better than best-effort computing. In: Proceedings of IEEE International Conference on Computer Communications and Networks (ICCCN 2016), (Waikoloa, Hawaii, USA), August 1–4, (2016)
Kwon, Y., et al.: Mantis: efficient predictions of execution time, energy usage, memory usage and network usage on smart mobile devices. IEEE Trans. Mobile Comput. 14(10), 2059–2072 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this chapter
Cite this chapter
Flores, H., Kostakos, V., Tarkoma, S., Hui, P., Li, Y. (2018). Evidence-Aware Mobile Cloud Architectures. In: Skourletopoulos, G., Mastorakis, G., Mavromoustakis, C., Dobre, C., Pallis, E. (eds) Mobile Big Data. Lecture Notes on Data Engineering and Communications Technologies, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-67925-9_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-67925-9_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67924-2
Online ISBN: 978-3-319-67925-9
eBook Packages: EngineeringEngineering (R0)