Skip to main content

RGB-Depth Image Based Human Detection Using Viola-Jones and Chan-Vese Active Contour Segmentation

  • Conference paper
  • First Online:
Advances in Signal Processing and Intelligent Recognition Systems (SIRS 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 678))

  • 1707 Accesses

Abstract

Human detection refers to the process of detecting human region from an image or from video frames. Most of the recent advanced human detection systems use the segmentation scheme by incorporating the depth information of the scene. In such systems, the scene gets captured by a RGB-D camera and the candidate area is segmented by setting an appropriate depth threshold for the captured depth images. In practice, depth data obtained from this depth analysis having critical problems, such as optical noise, absence of depth information for certain regions like hair area, and unmatched boundaries. The proposed approach mainly focus on restoring the actual edge information and hair area of the subject in the pre-segmented image by applying Viola Jones Algorithm for face area detection and Chan-Vese active contour detection for restoring hair and edge areas of the image over the detected face area. This final segmentation mask is used for segmenting the accurate human region from the original image with hair area and with boundaries similar to the ground truth. Experimental results prove the improvement in the visual quality of the segmented human area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dhamsania, C.J, Ratanpara, T.V.: A survey on human action recognition from videos. In: 2016Online International Conference on Green Engineering and Technologies (IC-GET), Coimbatore, pp. 1–5 (2016). doi:10.1109/GET.2016.7916717

  2. Chin-Teng, L., Linda, S., Yu-Wen, S., Tzu-Kuei, S.: A conditional entropy-based independent component analysis for applications in human detection and tracking. EURASIP J. Adv. Sig. Proc., 468329 (2010)

    Google Scholar 

  3. Jardim, D., Nunes, L., Dias, M.: Human activity recognition from automatically labeled data in RGB-D videos. In: 2016 8th Computer Science and Electronic Engineering (CEEC), Colchester, pp. 89–94. (2016). doi:10.1109/CEEC.2016.7835894

  4. Zaihidee, E.M., Ghazali., A.A, Almisreb, K.H.: Comparison of human segmentation using thermal and color image in outdoor environment. In: 2015 IEEE Conference on Systems, Process and Control (ICSPC), Bandar Sunway, pp. 152–156 (2015). doi:10.1109/SPC.2015.7473576

  5. Bilinski, P., Bremond, F.: Human violence recognition and detection in surveillance videos. In:2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Colorado Springs, CO, pp. 30–36. (2016) doi:10.1109/AVSS.2016.7738019

  6. Xinjian, Z., Liqing, Z.: Real Time Crowd Counting with Human Detection and Human Tracking. In: International Conference on Neural Information Processing, ICONIP: Neural Information Processing, pp. 1–8 (2014)

    Google Scholar 

  7. Tejero-de-Pablos, A., Nakashima, Y., Sato, T., Yokoya, N.: Human action recognition-based video summarization for RGB-D personal sports video. In: 2016 IEEE International Conference on Multimedia and Expo (ICME), Seattle, WA, pp. 1–6 (2016). doi:10.1109/ICME.2016.7552938

  8. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), San Diego, CA, USA, vol. 1, pp. 886–893 (2005)

    Google Scholar 

  9. David, G.L.: Distinctive Image Features from Scale-Invariant Keypoints. Computer Science Department University of British Columbia Vancouver, B.C., Canada

    Google Scholar 

  10. Singh, S., Gupta, S.C.: Human object detection by HoG, HoB, HoC and BO features. In: 2016 Fourth International Conference on Parallel, Distributed and Grid Computing (PDGC), Waknaghat, pp. 742–746 (2016). doi:10.1109/PDGC.2016.7913220

  11. Khawlah, H.A., Tianjiang W.: Recognition of human action and identification based on SIFT and Watermark. In: International Conference on Intelligent Computing ICIC: Intelligent Computing Methodologies, pp. 298–309 (2014)

    Google Scholar 

  12. Thakore, D.G., Trivedi, A.I., : Prominent boundaries and foreground detection based technique for human face extraction from color images containing complex background. In: 2011 Third National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics, Hubli, Karnataka, pp. 15–20 (2011). doi:10.1109/NCVPRIPG.2011.11

  13. Zhang, B., Liu, Q., Ikenaga, T.: Ghost-free high dynamic range imaging via moving objects detection and extension. In: 2015 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), Hong Kong, pp. 459–462 (2015). doi:10.1109/APSIPA.2015.7415313

  14. Procházka, A., Martin, S., Oldˇrich, V., Martin, V.: Microsoft kinect visual and depth sensors for breathing and heart rate analysis. Sensors 16, 996 (2016). doi:10.3390/s16070996

    Article  Google Scholar 

  15. Stone, E.E., Skubic, M.: Fall detection in homes of older adults using the Microsoft Kinect. IEEE J. Biomed. Health Inform. 19(1), 290–301 (2015). doi:10.1109/JBHI.2014.2312180

    Article  Google Scholar 

  16. Anggraini, N., Rozy, N.F., Lazuardy, R.A.: Facial recognition system for fatigue detection using Intel Realsense Technology. In: 2016 6th International Conference on Information and Communication Technology for The Muslim World (ICT4 M), Jakarta, pp. 248–253 (2016). doi:10.1109/ICT4M.2016.058

  17. Walas, K., Nowicki, M., Ferstl, D., Skrzypczyński, P.: Depth data fusion for simultaneous localization and mapping — RGB-DD SLAM. In: 2016 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), Baden-Baden, pp. 9–14 (2016). doi:10.1109/MFI.2016.7849459

  18. Cao, Y., Shen, C., Shen, H.T.: Exploiting depth from single monocular images for object detection and semantic segmentation. IEEE Trans. Image Process. 26(2), 836–846 (2017). doi:10.1109/TIP.2016.2621673

    Article  MathSciNet  Google Scholar 

  19. Viola, P., Jones, M.: Robust real-time face detection. In: Eighth IEEE International Conference on Computer Vision. ICCV 2001, p. 747 (2001). doi:10.1109/ICCV.2001.937709

  20. P, Viola., M, Jones.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 1, pp. I-511–I-518 (2001)

    Google Scholar 

  21. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001). doi:10.1109/83.902291

    Article  MATH  Google Scholar 

  22. Bagautdinov, T.M., Fleuret, F., Fua, P.: Probability occupancy maps for occluded depth images. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2015, Boston, MA, USA, 7–12 June 2015, pp. 2829–2837 (2015)

    Google Scholar 

  23. Lu, X., Chia-Chih, C., Aggarwal, J.K.: Human detection using depth information by Kinect. In: CVPR 2011 WORKSHOPS, Colorado Springs, CO, pp. 15–22 (2011). doi:10.1109/CVPRW.2011.5981811

  24. Benjamin, C., Cetin, M., Joydeep, B., Manuela, V.: Fast human detection for indoor mobile robots using depth images. In: 2013 IEEE Internationsal Conference on Robotics and Automation (ICRA) Karlsruhe, Germany, 6–10 May 2013

    Google Scholar 

  25. Choi, W., Pantofaru, C., Savarese, S.: A general framework for tracking multiple people from a moving camera. IEEE Trans. Pattern Anal. Mach. Intell. 35(7), 1577–1591 (2013)

    Article  Google Scholar 

  26. Can, G.N., Dutagaci, H.: Human detection from still depth images. In: Society for Imaging Science and Technology. Image Processing, Measurement (3DIPM), and Applications, pp. 3DIPM-046.1–3DIPM-045.7 (2016)

    Google Scholar 

  27. Katkar, J., Baraskar, T., Mankar, V.R.: A novel approach for medical image segmentation using PCA and K-means clustering. In:2015 International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT), Davangere, pp. 430–435 (2015). doi:10.1109/ICATCCT.2015.7456922

  28. Walia, G.S., Kapoor, R., Singh, S.: Depth and scale modeling of object for 3D motion analysis in video. In: 2013 IEEE Second International Conference on Image Information Processing (ICIIP-2013), Shimla, pp. 90–95 (2013). doi:10.1109/ICIIP.2013.6707562

  29. Cho, J.H., Kim, S.Y., Ho, Y.S., Lee, K.H.: Dynamic 3D human actor generation method using a time-of-flight depth camera. IEEE Trans. Consum. Electron. 54(4), 1514–1521 (2008). doi:10.1109/TCE.2008.4711195

    Article  Google Scholar 

  30. Ikemura, S., Fujiyoshi, H.: Real-Time human detection using relational depth similarity features. In: ACCV 2010. LNCS, vol 6495, pp. 25–38 (2011)

    Google Scholar 

  31. Egorov, A.D., Shtanko, A.N., Minin, P.E.: Selection of Viola-Jones algorithm parameters for specific conditions. Bull. Lebedev Phys. Inst. 42, 244 (2015). doi:10.3103/S1068335615080060

    Article  Google Scholar 

  32. Bruce, B.R., Aitken, J.M., Petke, J.: Deep parameter optimisation for face detection using the Viola-Jones algorithm in OpenCV. In: Sarro, F., Deb, K. (eds.) Search Based Software Engineering, SSBSE 2016. LNCS, vol 9962. Springer, Cham (2016)

    Google Scholar 

  33. Gonzalez, C., Rafael, E., Woods, R.: Digital image processing, Prentice Hall India, 2002

    Google Scholar 

  34. Malladi, R., Sethian, J.A., Vemuri, B.C.: A topology independent shape modeling scheme. In: Proceeding of SPIE Conference Geometric Methods Computer Vision II, San Diego, CA, vol. 2031, pp. 246–258 (1993)

    Google Scholar 

  35. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1, 321–331 (1988)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puji Lestari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Lestari, P., Schade, HP. (2018). RGB-Depth Image Based Human Detection Using Viola-Jones and Chan-Vese Active Contour Segmentation. In: Thampi, S., Krishnan, S., Corchado Rodriguez, J., Das, S., Wozniak, M., Al-Jumeily, D. (eds) Advances in Signal Processing and Intelligent Recognition Systems. SIRS 2017. Advances in Intelligent Systems and Computing, vol 678. Springer, Cham. https://doi.org/10.1007/978-3-319-67934-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67934-1_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67933-4

  • Online ISBN: 978-3-319-67934-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics