Abstract
Human detection refers to the process of detecting human region from an image or from video frames. Most of the recent advanced human detection systems use the segmentation scheme by incorporating the depth information of the scene. In such systems, the scene gets captured by a RGB-D camera and the candidate area is segmented by setting an appropriate depth threshold for the captured depth images. In practice, depth data obtained from this depth analysis having critical problems, such as optical noise, absence of depth information for certain regions like hair area, and unmatched boundaries. The proposed approach mainly focus on restoring the actual edge information and hair area of the subject in the pre-segmented image by applying Viola Jones Algorithm for face area detection and Chan-Vese active contour detection for restoring hair and edge areas of the image over the detected face area. This final segmentation mask is used for segmenting the accurate human region from the original image with hair area and with boundaries similar to the ground truth. Experimental results prove the improvement in the visual quality of the segmented human area.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Dhamsania, C.J, Ratanpara, T.V.: A survey on human action recognition from videos. In: 2016Online International Conference on Green Engineering and Technologies (IC-GET), Coimbatore, pp. 1–5 (2016). doi:10.1109/GET.2016.7916717
Chin-Teng, L., Linda, S., Yu-Wen, S., Tzu-Kuei, S.: A conditional entropy-based independent component analysis for applications in human detection and tracking. EURASIP J. Adv. Sig. Proc., 468329 (2010)
Jardim, D., Nunes, L., Dias, M.: Human activity recognition from automatically labeled data in RGB-D videos. In: 2016 8th Computer Science and Electronic Engineering (CEEC), Colchester, pp. 89–94. (2016). doi:10.1109/CEEC.2016.7835894
Zaihidee, E.M., Ghazali., A.A, Almisreb, K.H.: Comparison of human segmentation using thermal and color image in outdoor environment. In: 2015 IEEE Conference on Systems, Process and Control (ICSPC), Bandar Sunway, pp. 152–156 (2015). doi:10.1109/SPC.2015.7473576
Bilinski, P., Bremond, F.: Human violence recognition and detection in surveillance videos. In:2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Colorado Springs, CO, pp. 30–36. (2016) doi:10.1109/AVSS.2016.7738019
Xinjian, Z., Liqing, Z.: Real Time Crowd Counting with Human Detection and Human Tracking. In: International Conference on Neural Information Processing, ICONIP: Neural Information Processing, pp. 1–8 (2014)
Tejero-de-Pablos, A., Nakashima, Y., Sato, T., Yokoya, N.: Human action recognition-based video summarization for RGB-D personal sports video. In: 2016 IEEE International Conference on Multimedia and Expo (ICME), Seattle, WA, pp. 1–6 (2016). doi:10.1109/ICME.2016.7552938
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), San Diego, CA, USA, vol. 1, pp. 886–893 (2005)
David, G.L.: Distinctive Image Features from Scale-Invariant Keypoints. Computer Science Department University of British Columbia Vancouver, B.C., Canada
Singh, S., Gupta, S.C.: Human object detection by HoG, HoB, HoC and BO features. In: 2016 Fourth International Conference on Parallel, Distributed and Grid Computing (PDGC), Waknaghat, pp. 742–746 (2016). doi:10.1109/PDGC.2016.7913220
Khawlah, H.A., Tianjiang W.: Recognition of human action and identification based on SIFT and Watermark. In: International Conference on Intelligent Computing ICIC: Intelligent Computing Methodologies, pp. 298–309 (2014)
Thakore, D.G., Trivedi, A.I., : Prominent boundaries and foreground detection based technique for human face extraction from color images containing complex background. In: 2011 Third National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics, Hubli, Karnataka, pp. 15–20 (2011). doi:10.1109/NCVPRIPG.2011.11
Zhang, B., Liu, Q., Ikenaga, T.: Ghost-free high dynamic range imaging via moving objects detection and extension. In: 2015 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), Hong Kong, pp. 459–462 (2015). doi:10.1109/APSIPA.2015.7415313
Procházka, A., Martin, S., Oldˇrich, V., Martin, V.: Microsoft kinect visual and depth sensors for breathing and heart rate analysis. Sensors 16, 996 (2016). doi:10.3390/s16070996
Stone, E.E., Skubic, M.: Fall detection in homes of older adults using the Microsoft Kinect. IEEE J. Biomed. Health Inform. 19(1), 290–301 (2015). doi:10.1109/JBHI.2014.2312180
Anggraini, N., Rozy, N.F., Lazuardy, R.A.: Facial recognition system for fatigue detection using Intel Realsense Technology. In: 2016 6th International Conference on Information and Communication Technology for The Muslim World (ICT4 M), Jakarta, pp. 248–253 (2016). doi:10.1109/ICT4M.2016.058
Walas, K., Nowicki, M., Ferstl, D., Skrzypczyński, P.: Depth data fusion for simultaneous localization and mapping — RGB-DD SLAM. In: 2016 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), Baden-Baden, pp. 9–14 (2016). doi:10.1109/MFI.2016.7849459
Cao, Y., Shen, C., Shen, H.T.: Exploiting depth from single monocular images for object detection and semantic segmentation. IEEE Trans. Image Process. 26(2), 836–846 (2017). doi:10.1109/TIP.2016.2621673
Viola, P., Jones, M.: Robust real-time face detection. In: Eighth IEEE International Conference on Computer Vision. ICCV 2001, p. 747 (2001). doi:10.1109/ICCV.2001.937709
P, Viola., M, Jones.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 1, pp. I-511–I-518 (2001)
Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001). doi:10.1109/83.902291
Bagautdinov, T.M., Fleuret, F., Fua, P.: Probability occupancy maps for occluded depth images. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2015, Boston, MA, USA, 7–12 June 2015, pp. 2829–2837 (2015)
Lu, X., Chia-Chih, C., Aggarwal, J.K.: Human detection using depth information by Kinect. In: CVPR 2011 WORKSHOPS, Colorado Springs, CO, pp. 15–22 (2011). doi:10.1109/CVPRW.2011.5981811
Benjamin, C., Cetin, M., Joydeep, B., Manuela, V.: Fast human detection for indoor mobile robots using depth images. In: 2013 IEEE Internationsal Conference on Robotics and Automation (ICRA) Karlsruhe, Germany, 6–10 May 2013
Choi, W., Pantofaru, C., Savarese, S.: A general framework for tracking multiple people from a moving camera. IEEE Trans. Pattern Anal. Mach. Intell. 35(7), 1577–1591 (2013)
Can, G.N., Dutagaci, H.: Human detection from still depth images. In: Society for Imaging Science and Technology. Image Processing, Measurement (3DIPM), and Applications, pp. 3DIPM-046.1–3DIPM-045.7 (2016)
Katkar, J., Baraskar, T., Mankar, V.R.: A novel approach for medical image segmentation using PCA and K-means clustering. In:2015 International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT), Davangere, pp. 430–435 (2015). doi:10.1109/ICATCCT.2015.7456922
Walia, G.S., Kapoor, R., Singh, S.: Depth and scale modeling of object for 3D motion analysis in video. In: 2013 IEEE Second International Conference on Image Information Processing (ICIIP-2013), Shimla, pp. 90–95 (2013). doi:10.1109/ICIIP.2013.6707562
Cho, J.H., Kim, S.Y., Ho, Y.S., Lee, K.H.: Dynamic 3D human actor generation method using a time-of-flight depth camera. IEEE Trans. Consum. Electron. 54(4), 1514–1521 (2008). doi:10.1109/TCE.2008.4711195
Ikemura, S., Fujiyoshi, H.: Real-Time human detection using relational depth similarity features. In: ACCV 2010. LNCS, vol 6495, pp. 25–38 (2011)
Egorov, A.D., Shtanko, A.N., Minin, P.E.: Selection of Viola-Jones algorithm parameters for specific conditions. Bull. Lebedev Phys. Inst. 42, 244 (2015). doi:10.3103/S1068335615080060
Bruce, B.R., Aitken, J.M., Petke, J.: Deep parameter optimisation for face detection using the Viola-Jones algorithm in OpenCV. In: Sarro, F., Deb, K. (eds.) Search Based Software Engineering, SSBSE 2016. LNCS, vol 9962. Springer, Cham (2016)
Gonzalez, C., Rafael, E., Woods, R.: Digital image processing, Prentice Hall India, 2002
Malladi, R., Sethian, J.A., Vemuri, B.C.: A topology independent shape modeling scheme. In: Proceeding of SPIE Conference Geometric Methods Computer Vision II, San Diego, CA, vol. 2031, pp. 246–258 (1993)
Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1, 321–331 (1988)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Lestari, P., Schade, HP. (2018). RGB-Depth Image Based Human Detection Using Viola-Jones and Chan-Vese Active Contour Segmentation. In: Thampi, S., Krishnan, S., Corchado Rodriguez, J., Das, S., Wozniak, M., Al-Jumeily, D. (eds) Advances in Signal Processing and Intelligent Recognition Systems. SIRS 2017. Advances in Intelligent Systems and Computing, vol 678. Springer, Cham. https://doi.org/10.1007/978-3-319-67934-1_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-67934-1_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67933-4
Online ISBN: 978-3-319-67934-1
eBook Packages: EngineeringEngineering (R0)