Abstract
Directly browsing and analyzing numerous surveillance videos is inefficient for human operators. Video condensation is a technical solution to fast video browsing. On the one hand, traditional video condensation methods that skip frames using simple strategies may lose some important frames. On the other hand, the methods that rearrange frame contexts improve the browsing efficiency, but are not easy to be accelerated using the data processing centers with various hardware configurations. In this paper, we propose a platform-adaptive video condensation system based on change detection, which is easy to accelerate and keeps important frames accurately. To take full advantage of hardware acceleration, we implement each module of the proposed system using multithreading and GPU acceleration, and then further accelerate the system by exploiting the task-level parallelism. We solve the computational resources assignment problem via local search method. To be platform-adaptive, the combination of module using different hardware acceleration are compared to choose the optimal combination to make full use of the computational resources. Detailed experiments are conducted to validate the accuracy of the proposed system, the efficiency of the platform-adaptive mechanism and the high throughput performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Note that speedup is hardware dependent, given better hardware may lead to better speedup performance. The overall speedup for platform GTX750Ti is 12.6.
References
O’callaghan, D., Lew, E.L.: Method and apparatus for video on demand with fast forward, reverse and channel pause, U.S. Patent 5 477 263, 19 December 1995
Smith, M.A.: Video skimming and characterization through the combination of image and language understanding techniques. In: Proceedings of the IEEE Conference on CVPR, 1997, pp. 775–781
Petrovic, N., Jojic, N., Huang, T.S.: Adaptive video fast forward. Multimed. Tools Appl. 26(3), 327–344 (2005)
Hoferlin, B., Hoferlin, M., Weiskopf, D., Heidemann, G.: Information-based adaptive fast-forward for visual surveillance. Multimed. Tools Appl. 55(1), 127–150 (2011)
Kang, H.-W., Chen, X.-Q., Matsushita, Y., Tang, X.: Space-time video montage. In: Proceedings of the IEEE Conference on CVPR, pp. 1331–1338 (2006)
Li, Z., Ishwar, P., Konrad, J.: Video condensation by ribbon carving. IEEE Trans. Image Process. 18(11), 2572–2583 (2009)
Pritch, Y., Rav-Acha, A., Peleg, S.: Nonchronological video synopsis and indexing. IEEE Trans. Pattern Anal. Mach. Intell. 30(11), 1971–1984 (2008)
Pritch, Y., Rav-Acha, A., Gutman, A., Peleg, S.: Webcam synopsis: peeking around the world. In: Proceedings of the IEEE ICCV, pp. 1–8 (2007)
Rav-Acha, A., Pritch, Y., Peleg, S.: Making a long video short: Dynamic video synopsis. In: Proceedings of the IEEE Conference on CVPR, pp. 435–441 (2006)
Zhu, J., Feng, S., Yi, D., Liao, S., Lei, Z., Li, S.Z.: High performance video condensation system, IEEE Trans. Circuits Syst. Video Technol. (2014)
Huang, C.-R., Chung, P.-C., Yang, D.-K., Chen, H.-C., Huang, G.-J.: Maximum a posteriori probability estimation for online surveillance video synopsis. IEEE Trans. Circuits Syst. Video Technol. 24(8), 1417–1429 (2014)
Hutter, F., Hoos, H.H., Leyton-Brown, K., Stutzle, T.: ParamILS: an automatic algorithm configuration framework. J. Artif. Intell. Res. 36(1), 267–306 (2009)
Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: portfolio-based algorithms selection for SAT. J. Artif. Intell. Res. 32, 565–606 (2008)
Wren, C.R., Azarbayejani, A., Darrell, T., Pentland, A.P.: Pfinder: real-time tracking of the human body. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 780–785 (1997)
Koller, D., Weber, J., Huang, T., Malik, J., Ogasawara, G., Rao, B., Russel, S.: Toward robust automatic traffic scene analysis in real-time. In: Proceedings of the IEEE ICPR, pp. 126–131 (1994)
Friedman, N., Russell, S.: Image segmentation in video sequences: a probabilistic approach, In: Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence, pp. 175–181 (1997)
Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: Proceedings of the IEEE CVPR, pp. 246–252 (1999)
Hayman, E., Eklundh, J.: Statistical background subtraction for a mobile observer. In: Proceedings of the IEEE ICCV, pp. 67–74 (2003)
KaewTraKulPong, P., Bowden, R.: An improved adaptive background mixture model for real-time tracking with shadow detection. In: Proceedings of the European Workshop Advanced Video-Based Surveillance Systems, pp. 135–144 (2002)
Zivkovic, Z., der Heijden, E.: Recursive unsupervised learning of finite mixture models, IEEE Trans. Pattern Anal. Mach. Intell. 26(5) (2004)
Zivkovic, Z.: Improved adaptive gaussian mixture model for background subtraction. In: Proceedings of the IEEE ICPR, pp. 28–31 (2004)
Dubuisson, M.P., Jain, A.K.: Contour extraction of moving objects in complex outdoor scenes. Int. J. Comput. Vis. 14(1), 83–105 (1995)
Lipton, A.J., Fujiyoshi, H., Patil, R.S.: Moving target classification and tracking from real-time video. In: Proceedings of the IEEE Workshop on Applications of Computer Vision, pp. 8–14 (1998)
Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Comput. Vis. Graph. Image Process. 30(1), 32–46 (1985)
Teh, C.H., Chin, R.T.: On the detection of dominant points on digital curve. IEEE Trans. Pattern Anal. Mach. Intell. 11(8), 859–872 (1989)
Nvidia CUDA Programming Guide 2.0. http://www.nvidia.com/object/cuda_develop.html
Podlozhnyuk, V.: “Image Convolution with CUDA,” Nvidia CUDA 2.0 SDK convolution Speparable document
Goyette, N., Jodoin, P.-M., Porikli, F., Konrad, J., Ishwar, P.: Changedetection.net: a new change detection benchmark dataset. In: Proceedings of the IEEE Workshop on Change Detection (CDW-2012) at CVPR-2012, Providence, RI, 16–21 June 2012
Wang, Y., Dou, Y., Guo, S., Lei, Y., Zou, D.: CPU–GPU hybrid parallel strategy for cosmological simulations. Concurr. Comput. Pract. Exp. 26(3), 748–765 (2014)
Lei, G., Dou, Y., Wan, W., Xia, F., Li, R., Ma, M., Zou, D.: CPU-GPU hybrid accelerating the Zuker algorithm for RNA secondary structure prediction applications, BMC Genomics 13(Suppl 1) (2012)
Chandra, R.: Parallel Programming in OpenMP. Morgan Kaufmann, Burlington (2001)
Hermann, E., Raffin, B., Faure, F., et al.: Multi-GPU and multi-CPU parallelization for interactive physics simulations. In: Euro-Par 2010-Parallel Processing, pp. 235–246 (2010)
Acknowledgements
This work was supported in part by the Chinese National Natural Science Foundation Projects #U1435219, #61402507, #61572515, #61402499.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Qiao, P., Li, T., Dou, Y., Lei, Y., Luo, H., Jin, C. (2017). Platform-Adaptive High-Throughput Surveillance Video Condensation on Heterogeneous Processor Clusters. In: Dou, Y., Lin, H., Sun, G., Wu, J., Heras, D., Bougé, L. (eds) Advanced Parallel Processing Technologies. APPT 2017. Lecture Notes in Computer Science(), vol 10561. Springer, Cham. https://doi.org/10.1007/978-3-319-67952-5_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-67952-5_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67951-8
Online ISBN: 978-3-319-67952-5
eBook Packages: Computer ScienceComputer Science (R0)