Abstract
Receptor-ligand molecular docking aims to predict possible drug candidates for many diseases, and it requires a lot of computing cost. Shortening this time- consumption process will help pharmaceutical scientist to speed up drug development. In this paper, a parallel molecular docking simulation based on CPU-GPU heterogeneous computing is proposed. This simulation is developed from our previous developed molecular docking code iFitDock (Induced fit docking program) which introduced Non-dominated Sorting Genetic Algorithm II (NSGA II) and Molecular Mechanical-Generalized Born Surface Area (MM-GBSA) binding free energy. In this program, the most computationally intensive part is the computing of scoring functions due to complex computing process of free binding free energy. Thus, this paper focuses on offloading the computing of scoring functions as well as related conformation spatial transformation to GPU, and keeping the rest of the simulation on CPU. A detailed CPU-GPU heterogeneous computing model is constructed to parallelize the computing of scoring functions and related workload on the GPU and to define the data exchange between GPU and CPU. The primary parallel iFitDock system with only parallel semi-flexible docking implemented achieves a speedup of around ~20× with respect to a single CPU core. The result shows that it is very productive to use CPU-GPU heterogeneous computing for semi-flexible molecule docking cases in iFitDock.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ritchie, D.W., Venkatraman, V., Mavridis, L.: Using graphics processors to accelerate protein docking calculations. In: Studies in Health Technology and Informatics, pp. 146–155 (2010). doi:10.3233/978-1-60750-583-9-146
Moustakas, D.T., Lang, P.T., Pegg, S., Pettersen, E., Kuntz, I.D., Brooijmans, N., Rizzo, R.C.: Development and validation of a modular, extensible docking program: DOCK 5. J. Comput.-Aided Mol. Des. 20, 601–619 (2006). doi:10.1007/s10822-006-9060-4
Wu, J., Chen, C., Hong, B.: A GPU-based approach to accelerate computational protein-DNA docking. Comput. Sci. Eng. 14, 20–29 (2012). doi:10.1186/1477-5956-10-S1-S17
Korb, O., Stützle, T., Exner, T.E.: Accelerating molecular docking calculations using graphics processing units. J. Chem. Inf. Model. 51, 865–876 (2011). doi:10.1021/ci100459b
Anthopoulos, A., Pasqualetto, G., Grimstead, I., Brancale, A.: Haptic-driven, interactive drug design: implementing a GPU-based approach to evaluate the induced fit effect. Faraday Discuss. 169, 323–342 (2014). doi:10.1039/c3fd00139c
Yang, H., Li, B., Wang, Y., Luan, Z., Qian, D., Chu, T.: Accelerating Dock6’s amber scoring with graphic processing unit. In: Hsu, C.-H., Yang, L.T., Park, J.H., Yeo, S.-S. (eds.) ICA3PP 2010. LNCS, vol. 6081, pp. 404–415. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13119-6_35
Altuntaş, S., Bozkus, Z., Fraguela, B.B.: GPU accelerated molecular docking simulation with genetic algor ithms. In: Squillero, G., Burelli, P. (eds.) EvoApplications 2016. LNCS, vol. 9598, pp. 134–146. Springer, Cham (2016). doi:10.1007/978-3-319-31153-1_10
Sukhwani, B., Herbordt, M.C.: FPGA acceleration of rigid-molecule docking codes. IET Comput. Digital Tech. 4, 184–195 (2010). doi:10.1049/iet-cdt.2009.0013
Bai, F., Xu, Y., Chen, J., Liu, Q., Gu, J., Wang, X., Ma, J., Li, H., Onuchic, J.N., Jiang, H.: Free energy landscape for the binding process of Huperzine A to acetylcholinesterase. Proc. Nat. Acad. Sci. U.S.A. 110, 4273–4278 (2013). doi:10.1073/pnas.1301814110
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002). doi:10.1109/4235.996017
Acknowledgments
The authors are grateful to the financial supports from National Key R&D Program of China (under Grant No. 2016YFA0502300).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Xu, J., Li, J., Cai, Y. (2017). Molecular Docking Simulation Based on CPU-GPU Heterogeneous Computing. In: Dou, Y., Lin, H., Sun, G., Wu, J., Heras, D., Bougé, L. (eds) Advanced Parallel Processing Technologies. APPT 2017. Lecture Notes in Computer Science(), vol 10561. Springer, Cham. https://doi.org/10.1007/978-3-319-67952-5_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-67952-5_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67951-8
Online ISBN: 978-3-319-67952-5
eBook Packages: Computer ScienceComputer Science (R0)