Skip to main content

Using Machine Learning to Diagnose Bacterial Sepsis in the Critically Ill Patients

  • Conference paper
  • First Online:
Smart Health (ICSH 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10347))

Included in the following conference series:

  • 1580 Accesses

Abstract

Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. Early antibiotic therapy to patients with sepsis is necessary. Every hour of therapy delay could reduce the survival chance of patients with severe sepsis by 7.6%. Certain biomarkers like blood routine and C-reactive protein (CRP) are not sufficient to diagnose bacterial sepsis, and their sensitivity and specificity are relatively low. Procalcitonin (PCT) is the best diagnostic biomarker for sepsis so far, but is still not effective when sepsis occurs with some complications. Machine learning techniques were thus proposed to support diagnosis in this paper. A backpropagation artificial neural network (ANN) classifier, a support vector machine (SVM) classifier and a random forest (RF) classifier were trained and tested using the electronic health record (EHR) data of 185 critically ill patients. The area under curve (AUC), accuracy, sensitivity, and specificity of the ANN, SVM, and RF classifiers were (0.931, 90.8%, 90.2%, 91.6%), (0.940, 88.6%, 92.2%, 84.3%) and (0.953, 89.2%, 88.2%, 90.4%) respectively, which outperformed PCT where the corresponding values were (0.896, 0.716, 0.952, 0.822). In conclusion, the ANN and SVM classifiers explored have better diagnostic value on bacterial sepsis than any single biomarkers involve in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Singer, M., Deutschman, C.S., Seymour, C., et al.: The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315, 801–810 (2016). doi:10.1001/jama.2016.0287

    Article  Google Scholar 

  2. Angus, D.C., Linde-Zwirble, W.T., Lidicker, J., Clermont, G., Carcillo, J., Pinsky, M.R.: Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit. Care Med. Baltim. 29, 1303–1310 (2001)

    Article  Google Scholar 

  3. Liu, V., Escobar, G.J., Greene, J.D., Soule, J., Whippy, A., Angus, D.C., Iwashyna, T.J.: Hospital deaths in patients with sepsis from 2 independent cohorts. JAMA 312, 90–92 (2014)

    Article  Google Scholar 

  4. Bone, R.C., Balk, R.A., Cerra, F.B., Dellinger, R.P., Fein, A.M., Knaus, W.A., Schein, R., Sibbald, W.J.: Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest J. 101, 1644–1655 (1992)

    Article  Google Scholar 

  5. Sprung, C.L., Sakr, Y., Vincent, J.-L., Le Gall, J.-R., Reinhart, K., Ranieri, V.M., Gerlach, H., Fielden, J., Groba, C.B., Payen, D.: An evaluation of systemic inflammatory response syndrome signs in the sepsis occurrence in acutely ill patients (SOAP) study. Intensive Care Med. 32, 421–427 (2006)

    Article  Google Scholar 

  6. Vincent, J.-L., Opal, S.M., Marshall, J.C., Tracey, K.J.: Sepsis definitions: time for change. Lancet Lond. Engl. 381, 774 (2013)

    Article  Google Scholar 

  7. Seymour, C.W., Liu, V.X., Iwashyna, T.J., Brunkhorst, F.M., Rea, T.D., Scherag, A., Rubenfeld, G., Kahn, J.M., Shankar-Hari, M., Singer, M.: Assessment of clinical criteria for sepsis: for the third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315, 762–774 (2016)

    Article  Google Scholar 

  8. Dellinger, R.P., Levy, M.M., Rhodes, A., Annane, D., Gerlach, H., Opal, S.M., Sevransky, J.E., Sprung, C.L., Douglas, I.S., Jaeschke, R.: Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 39, 165–228 (2013)

    Article  Google Scholar 

  9. van Zanten, A.R.: The golden hour of antibiotic administration in severe sepsis: avoid a false start striving for gold*. Crit. Care Med. 42, 1931–1932 (2014)

    Article  Google Scholar 

  10. Gross, P.A., Patel, B.: Reducing antibiotic overuse: a call for a national performance measure for not treating asymptomatic bacteriuria. Clin. Infect. Dis. 45, 1335–1337 (2007)

    Article  Google Scholar 

  11. Harbarth, S., Holeckova, K., Froidevaux, C., Pittet, D., Ricou, B., Grau, G.E., Vadas, L., Pugin, J.: Diagnostic value of procalcitonin, interleukin-6, and interleukin-8 in critically ill patients admitted with suspected sepsis. Am. J. Respir. Crit. Care Med. 164, 396–402 (2001)

    Article  Google Scholar 

  12. Miglietta, F., Faneschi, M., Lobreglio, G., Palumbo, C., Rizzo, A., Cucurachi, M., Portaccio, G., Guerra, F., Pizzolante, M.: Procalcitonin, C-reactive protein and serum lactate dehydrogenase in the diagnosis of bacterial sepsis, SIRS and systemic candidiasis. Infez. Med. Riv. Period. Eziologia Epidemiol. Diagn. Clin. E Ter. Delle Patol. Infett. 23, 230–237 (2015)

    Google Scholar 

  13. Wang, K., Bhandari, V., Chepustanova, S., Huber, G., Stephen, O., Corey, S., Shattuck, M.D., Kirby, M.: Which biomarkers reveal neonatal sepsis? PLoS ONE 8, e82700 (2013)

    Article  Google Scholar 

  14. Becchi, C., Al Malyan, M., Fabbri, L., Marsili, M., Boddi, V., Boncinelli, S.: Mean platelet volume trend in sepsis: is it a useful parameter? Minerva Anestesiol. 72, 749–756 (2006)

    Google Scholar 

  15. Guven, H., Altintop, L., Baydin, A., Esen, S., Aygun, D., Hokelek, M., Doganay, Z., Bek, Y.: Diagnostic value of procalcitonin levels as an early indicator of sepsis. Am. J. Emerg. Med. 20, 202–206 (2002). doi:10.1053/ajem.2002.33005

    Article  Google Scholar 

  16. Charles, P.E., Ladoire, S., Aho, S., Quenot, J.-P., Doise, J.-M., Prin, S., Olsson, N.-O., Blettery, B.: Serum procalcitonin elevation in critically ill patients at the onset of bacteremia caused by either Gram negative or Gram positive bacteria. BMC Infect. Dis. 8, 1 (2008)

    Article  Google Scholar 

  17. Meisner, M., Tschaikowsky, K., Hutzler, A., Schüttler, J., Schick, C.: Postoperative plasma concentrations of procalcitonin after different types of surgery. Intensive Care Med. 24, 680–684 (1998). doi:10.1007/s001340050644

    Article  Google Scholar 

  18. Mimoz, O., Edouard, A.R., Samii, K., Benoist, J.F., Assicot, M., Bohuon, C.: Procalcitonin and C-reactive protein during the early posttraumatic systemic inflammatory response syndrome. Intensive Care Med. 24, 185–188 (1998). doi:10.1007/s001340050543

    Article  Google Scholar 

  19. Hausfater, P., Hurtado, M., Pease, S., Juillien, G., Lvovschi, V.-E., Salehabadi, S., Lidove, O., Wolff, M., Bernard, M., Chollet-Martin, S., Riou, B.: Is procalcitonin a marker of critical illness in heatstroke? Intensive Care Med. 34, 1377–1383 (2008). doi:10.1007/s00134-008-1083-y

    Article  Google Scholar 

  20. Mann, E.A., Wood, G.L., Wade, C.E.: Use of procalcitonin for the detection of sepsis in the critically ill burn patient: a systematic review of the literature. Burns. 37, 549–558 (2011). doi:10.1016/j.burns.2010.04.013

    Article  Google Scholar 

  21. Rau, B.M., Kemppainen, E.A., Gumbs, A.A., Büchler, M.W., Wegscheider, K., Bassi, C., Puolakkainen, P.A., Beger, H.G.: Early assessment of pancreatic infections and overall prognosis in severe acute pancreatitis by procalcitonin (PCT): a prospective international multicenter study. Ann. Surg. 245, 745 (2007). doi:10.1097/01.sla.0000252443.22360.46

    Article  Google Scholar 

  22. Kim, Y.J., Kang, S.W., Lee, J.H., Cho, J.H.: Marked elevation of procalcitonin level can lead to a misdiagnosis of anaphylactic shock as septic shock. Int. J. Infect. Dis. 37, 93–94 (2015). doi:10.1016/j.ijid.2015.06.012

    Article  Google Scholar 

  23. Geppert, A., Steiner, A., Delle-Karth, G., Heinz, G., Huber, K.: Usefulness of procalcitonin for diagnosing complicating sepsis in patients with cardiogenic shock. Intensive Care Med. 29, 1384–1389 (2003). doi:10.1007/s00134-003-1827-7

    Article  Google Scholar 

  24. Patil, S., Henry, J.W., Rubenfire, M., Stein, P.D.: Neural network in the clinical diagnosis of acute pulmonary embolism. CHEST J. 104, 1685–1689 (1993)

    Article  Google Scholar 

  25. Tu, J.V.: Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J. Clin. Epidemiol. 49, 1225–1231 (1996)

    Article  Google Scholar 

  26. Lammers, R.L., Hudson, D.L., Seaman, M.E.: Prediction of traumatic wound infection with a neural network-derived decision model. Am. J. Emerg. Med. 21, 1–7 (2003). doi:10.1053/ajem.2003.50026

    Article  Google Scholar 

  27. Heckerling, P.S., Canaris, G.J., Flach, S.D., Tape, T.G., Wigton, R.S., Gerber, B.S.: Predictors of urinary tract infection based on artificial neural networks and genetic algorithms. Int. J. Med. Inf. 76, 289–296 (2007). doi:10.1016/j.ijmedinf.2006.01.005

    Article  Google Scholar 

  28. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995). doi:10.1023/A:1022627411411

    MATH  Google Scholar 

  29. Abeel, T., Helleputte, T., Van de Peer, Y., Dupont, P., Saeys, Y.: Robust biomarker identification for cancer diagnosis with ensemble feature selection methods. Bioinformatics 26, 392–398 (2010). doi:10.1093/bioinformatics/btp630

    Article  Google Scholar 

  30. Liu, J.J., Cutler, G., Li, W., Pan, Z., Peng, S., Hoey, T., Chen, L., Ling, X.B.: Multiclass cancer classification and biomarker discovery using GA-based algorithms. Bioinformatics 21, 2691–2697 (2005). doi:10.1093/bioinformatics/bti419

    Article  Google Scholar 

  31. Wang, G., Lam, K.-M., Deng, Z., Choi, K.-S.: Prediction of mortality after radical cystectomy for bladder cancer by machine learning techniques. Comput. Biol. Med. 63, 124–132 (2015). doi:10.1016/j.compbiomed.2015.05.015

    Article  Google Scholar 

  32. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001). doi:10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  33. Hsieh, C.-H., Lu, R.-H., Lee, N.-H., Chiu, W.-T., Hsu, M.-H., Li (Jack), Y.-C.: Novel solutions for an old disease: diagnosis of acute appendicitis with random forest, support vector machines, and artificial neural networks. Surgery 149, 87–93 (2011). doi:10.1016/j.surg.2010.03.023

    Article  Google Scholar 

  34. Özçift, A.: Random forests ensemble classifier trained with data resampling strategy to improve cardiac arrhythmia diagnosis. Comput. Biol. Med. 41, 265–271 (2011). doi:10.1016/j.compbiomed.2011.03.001

    Article  Google Scholar 

  35. Nguyen, C., Wang, Y., Nguyen, H.N.: Random forest classifier combined with feature selection for breast cancer diagnosis and prognostic (2013). doi:10.4236/jbise.2013.65070

  36. Azar, A.T., Elshazly, H.I., Hassanien, A.E., Elkorany, A.M.: A random forest classifier for lymph diseases. Comput. Methods Programs Biomed. 113, 465–473 (2014). doi:10.1016/j.cmpb.2013.11.004

    Article  Google Scholar 

  37. Lawrence, D.: Health insurance portability and accountability act (HIPAA) privacy rule and the national instant criminal background check system (NICS). Final rule. Fed. Regist. 81, 382–396 (2016)

    Google Scholar 

  38. Nissen, S.: Implementation of a fast artificial neural network library (FANN). Rep. Dep. Comput. Sci. Univ. Cph. DIKU. 31, 29 (2003)

    Google Scholar 

  39. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011). doi:10.1145/1961189.1961199

  40. Google Code Archive - Long-term storage for Google Code Project Hosting. https://code.google.com/archive/p/randomforest-matlab/

  41. Liaw, A., Wiener, M.: Classification and regression by random forest. R. News 2, 18–22 (2002)

    Google Scholar 

  42. Youden, W.J.: Index for rating diagnostic tests. Cancer 3, 32–35 (1950)

    Article  Google Scholar 

  43. Miotto, R., Li, L., Kidd, B.A., Dudley, J.T.: Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci. Rep. 6, 26094 (2016). doi:10.1038/srep26094

    Article  Google Scholar 

  44. Nguyen, P., Tran, T., Wickramasinghe, N., Venkatesh, S.: Deepr: a convolutional net for medical records (2016). ArXiv160707519 Cs Stat

    Google Scholar 

Download references

Acknowledgement

This work is supported in part by the Hong Kong Research Grants Council (PolyU 152040/16E), the Hong Kong Polytechnic University (G-UC93, G-YBKX) and the YC Yu Scholarship for Centre for Smart Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kup-Sze Choi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Liu, Y., Choi, KS. (2017). Using Machine Learning to Diagnose Bacterial Sepsis in the Critically Ill Patients. In: Chen, H., Zeng, D., Karahanna, E., Bardhan, I. (eds) Smart Health. ICSH 2017. Lecture Notes in Computer Science(), vol 10347. Springer, Cham. https://doi.org/10.1007/978-3-319-67964-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67964-8_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67963-1

  • Online ISBN: 978-3-319-67964-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics