Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. Early antibiotic therapy to patients with sepsis is necessary. Every hour of therapy delay could reduce the survival chance of patients with severe sepsis by 7.6%. Certain biomarkers like blood routine and C-reactive protein (CRP) are not sufficient to diagnose bacterial sepsis, and their sensitivity and specificity are relatively low. Procalcitonin (PCT) is the best diagnostic biomarker for sepsis so far, but is still not effective when sepsis occurs with some complications. Machine learning techniques were thus proposed to support diagnosis in this paper. A backpropagation artificial neural network (ANN) classifier, a support vector machine (SVM) classifier and a random forest (RF) classifier were trained and tested using the electronic health record (EHR) data of 185 critically ill patients. The area under curve (AUC), accuracy, sensitivity, and specificity of the ANN, SVM, and RF classifiers were (0.931, 90.8%, 90.2%, 91.6%), (0.940, 88.6%, 92.2%, 84.3%) and (0.953, 89.2%, 88.2%, 90.4%) respectively, which outperformed PCT where the corresponding values were (0.896, 0.716, 0.952, 0.822). In conclusion, the ANN and SVM classifiers explored have better diagnostic value on bacterial sepsis than any single biomarkers involve in this study.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Singer, M., Deutschman, C.S., Seymour, C., et al.: The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315, 801–810 (2016). doi:10.1001/jama.2016.0287
Angus, D.C., Linde-Zwirble, W.T., Lidicker, J., Clermont, G., Carcillo, J., Pinsky, M.R.: Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit. Care Med. Baltim. 29, 1303–1310 (2001)
Liu, V., Escobar, G.J., Greene, J.D., Soule, J., Whippy, A., Angus, D.C., Iwashyna, T.J.: Hospital deaths in patients with sepsis from 2 independent cohorts. JAMA 312, 90–92 (2014)
Bone, R.C., Balk, R.A., Cerra, F.B., Dellinger, R.P., Fein, A.M., Knaus, W.A., Schein, R., Sibbald, W.J.: Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest J. 101, 1644–1655 (1992)
Sprung, C.L., Sakr, Y., Vincent, J.-L., Le Gall, J.-R., Reinhart, K., Ranieri, V.M., Gerlach, H., Fielden, J., Groba, C.B., Payen, D.: An evaluation of systemic inflammatory response syndrome signs in the sepsis occurrence in acutely ill patients (SOAP) study. Intensive Care Med. 32, 421–427 (2006)
Vincent, J.-L., Opal, S.M., Marshall, J.C., Tracey, K.J.: Sepsis definitions: time for change. Lancet Lond. Engl. 381, 774 (2013)
Seymour, C.W., Liu, V.X., Iwashyna, T.J., Brunkhorst, F.M., Rea, T.D., Scherag, A., Rubenfeld, G., Kahn, J.M., Shankar-Hari, M., Singer, M.: Assessment of clinical criteria for sepsis: for the third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315, 762–774 (2016)
Dellinger, R.P., Levy, M.M., Rhodes, A., Annane, D., Gerlach, H., Opal, S.M., Sevransky, J.E., Sprung, C.L., Douglas, I.S., Jaeschke, R.: Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 39, 165–228 (2013)
van Zanten, A.R.: The golden hour of antibiotic administration in severe sepsis: avoid a false start striving for gold*. Crit. Care Med. 42, 1931–1932 (2014)
Gross, P.A., Patel, B.: Reducing antibiotic overuse: a call for a national performance measure for not treating asymptomatic bacteriuria. Clin. Infect. Dis. 45, 1335–1337 (2007)
Harbarth, S., Holeckova, K., Froidevaux, C., Pittet, D., Ricou, B., Grau, G.E., Vadas, L., Pugin, J.: Diagnostic value of procalcitonin, interleukin-6, and interleukin-8 in critically ill patients admitted with suspected sepsis. Am. J. Respir. Crit. Care Med. 164, 396–402 (2001)
Miglietta, F., Faneschi, M., Lobreglio, G., Palumbo, C., Rizzo, A., Cucurachi, M., Portaccio, G., Guerra, F., Pizzolante, M.: Procalcitonin, C-reactive protein and serum lactate dehydrogenase in the diagnosis of bacterial sepsis, SIRS and systemic candidiasis. Infez. Med. Riv. Period. Eziologia Epidemiol. Diagn. Clin. E Ter. Delle Patol. Infett. 23, 230–237 (2015)
Wang, K., Bhandari, V., Chepustanova, S., Huber, G., Stephen, O., Corey, S., Shattuck, M.D., Kirby, M.: Which biomarkers reveal neonatal sepsis? PLoS ONE 8, e82700 (2013)
Becchi, C., Al Malyan, M., Fabbri, L., Marsili, M., Boddi, V., Boncinelli, S.: Mean platelet volume trend in sepsis: is it a useful parameter? Minerva Anestesiol. 72, 749–756 (2006)
Guven, H., Altintop, L., Baydin, A., Esen, S., Aygun, D., Hokelek, M., Doganay, Z., Bek, Y.: Diagnostic value of procalcitonin levels as an early indicator of sepsis. Am. J. Emerg. Med. 20, 202–206 (2002). doi:10.1053/ajem.2002.33005
Charles, P.E., Ladoire, S., Aho, S., Quenot, J.-P., Doise, J.-M., Prin, S., Olsson, N.-O., Blettery, B.: Serum procalcitonin elevation in critically ill patients at the onset of bacteremia caused by either Gram negative or Gram positive bacteria. BMC Infect. Dis. 8, 1 (2008)
Meisner, M., Tschaikowsky, K., Hutzler, A., Schüttler, J., Schick, C.: Postoperative plasma concentrations of procalcitonin after different types of surgery. Intensive Care Med. 24, 680–684 (1998). doi:10.1007/s001340050644
Mimoz, O., Edouard, A.R., Samii, K., Benoist, J.F., Assicot, M., Bohuon, C.: Procalcitonin and C-reactive protein during the early posttraumatic systemic inflammatory response syndrome. Intensive Care Med. 24, 185–188 (1998). doi:10.1007/s001340050543
Hausfater, P., Hurtado, M., Pease, S., Juillien, G., Lvovschi, V.-E., Salehabadi, S., Lidove, O., Wolff, M., Bernard, M., Chollet-Martin, S., Riou, B.: Is procalcitonin a marker of critical illness in heatstroke? Intensive Care Med. 34, 1377–1383 (2008). doi:10.1007/s00134-008-1083-y
Mann, E.A., Wood, G.L., Wade, C.E.: Use of procalcitonin for the detection of sepsis in the critically ill burn patient: a systematic review of the literature. Burns. 37, 549–558 (2011). doi:10.1016/j.burns.2010.04.013
Rau, B.M., Kemppainen, E.A., Gumbs, A.A., Büchler, M.W., Wegscheider, K., Bassi, C., Puolakkainen, P.A., Beger, H.G.: Early assessment of pancreatic infections and overall prognosis in severe acute pancreatitis by procalcitonin (PCT): a prospective international multicenter study. Ann. Surg. 245, 745 (2007). doi:10.1097/01.sla.0000252443.22360.46
Kim, Y.J., Kang, S.W., Lee, J.H., Cho, J.H.: Marked elevation of procalcitonin level can lead to a misdiagnosis of anaphylactic shock as septic shock. Int. J. Infect. Dis. 37, 93–94 (2015). doi:10.1016/j.ijid.2015.06.012
Geppert, A., Steiner, A., Delle-Karth, G., Heinz, G., Huber, K.: Usefulness of procalcitonin for diagnosing complicating sepsis in patients with cardiogenic shock. Intensive Care Med. 29, 1384–1389 (2003). doi:10.1007/s00134-003-1827-7
Patil, S., Henry, J.W., Rubenfire, M., Stein, P.D.: Neural network in the clinical diagnosis of acute pulmonary embolism. CHEST J. 104, 1685–1689 (1993)
Tu, J.V.: Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J. Clin. Epidemiol. 49, 1225–1231 (1996)
Lammers, R.L., Hudson, D.L., Seaman, M.E.: Prediction of traumatic wound infection with a neural network-derived decision model. Am. J. Emerg. Med. 21, 1–7 (2003). doi:10.1053/ajem.2003.50026
Heckerling, P.S., Canaris, G.J., Flach, S.D., Tape, T.G., Wigton, R.S., Gerber, B.S.: Predictors of urinary tract infection based on artificial neural networks and genetic algorithms. Int. J. Med. Inf. 76, 289–296 (2007). doi:10.1016/j.ijmedinf.2006.01.005
Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995). doi:10.1023/A:1022627411411
Abeel, T., Helleputte, T., Van de Peer, Y., Dupont, P., Saeys, Y.: Robust biomarker identification for cancer diagnosis with ensemble feature selection methods. Bioinformatics 26, 392–398 (2010). doi:10.1093/bioinformatics/btp630
Liu, J.J., Cutler, G., Li, W., Pan, Z., Peng, S., Hoey, T., Chen, L., Ling, X.B.: Multiclass cancer classification and biomarker discovery using GA-based algorithms. Bioinformatics 21, 2691–2697 (2005). doi:10.1093/bioinformatics/bti419
Wang, G., Lam, K.-M., Deng, Z., Choi, K.-S.: Prediction of mortality after radical cystectomy for bladder cancer by machine learning techniques. Comput. Biol. Med. 63, 124–132 (2015). doi:10.1016/j.compbiomed.2015.05.015
Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001). doi:10.1023/A:1010933404324
Hsieh, C.-H., Lu, R.-H., Lee, N.-H., Chiu, W.-T., Hsu, M.-H., Li (Jack), Y.-C.: Novel solutions for an old disease: diagnosis of acute appendicitis with random forest, support vector machines, and artificial neural networks. Surgery 149, 87–93 (2011). doi:10.1016/j.surg.2010.03.023
Özçift, A.: Random forests ensemble classifier trained with data resampling strategy to improve cardiac arrhythmia diagnosis. Comput. Biol. Med. 41, 265–271 (2011). doi:10.1016/j.compbiomed.2011.03.001
Nguyen, C., Wang, Y., Nguyen, H.N.: Random forest classifier combined with feature selection for breast cancer diagnosis and prognostic (2013). doi:10.4236/jbise.2013.65070
Azar, A.T., Elshazly, H.I., Hassanien, A.E., Elkorany, A.M.: A random forest classifier for lymph diseases. Comput. Methods Programs Biomed. 113, 465–473 (2014). doi:10.1016/j.cmpb.2013.11.004
Lawrence, D.: Health insurance portability and accountability act (HIPAA) privacy rule and the national instant criminal background check system (NICS). Final rule. Fed. Regist. 81, 382–396 (2016)
Nissen, S.: Implementation of a fast artificial neural network library (FANN). Rep. Dep. Comput. Sci. Univ. Cph. DIKU. 31, 29 (2003)
Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011). doi:10.1145/1961189.1961199
Google Code Archive - Long-term storage for Google Code Project Hosting. https://code.google.com/archive/p/randomforest-matlab/
Liaw, A., Wiener, M.: Classification and regression by random forest. R. News 2, 18–22 (2002)
Youden, W.J.: Index for rating diagnostic tests. Cancer 3, 32–35 (1950)
Miotto, R., Li, L., Kidd, B.A., Dudley, J.T.: Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci. Rep. 6, 26094 (2016). doi:10.1038/srep26094
Nguyen, P., Tran, T., Wickramasinghe, N., Venkatesh, S.: Deepr: a convolutional net for medical records (2016). ArXiv160707519 Cs Stat
Acknowledgement
This work is supported in part by the Hong Kong Research Grants Council (PolyU 152040/16E), the Hong Kong Polytechnic University (G-UC93, G-YBKX) and the YC Yu Scholarship for Centre for Smart Health.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Liu, Y., Choi, KS. (2017). Using Machine Learning to Diagnose Bacterial Sepsis in the Critically Ill Patients. In: Chen, H., Zeng, D., Karahanna, E., Bardhan, I. (eds) Smart Health. ICSH 2017. Lecture Notes in Computer Science(), vol 10347. Springer, Cham. https://doi.org/10.1007/978-3-319-67964-8_22
Download citation
DOI: https://doi.org/10.1007/978-3-319-67964-8_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67963-1
Online ISBN: 978-3-319-67964-8
eBook Packages: Computer ScienceComputer Science (R0)