Skip to main content

Enhanced Modelling of Authenticated Key Exchange Security

  • Conference paper
  • First Online:
Security and Trust Management (STM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10547))

Included in the following conference series:

  • 887 Accesses

Abstract

The security models for Authenticated Key Exchange do not consider leakages on pre-computed ephemeral data before their use in sessions. We investigate the consequences of such leakages and point out damaging consequences. As an illustration, we show the HMQV-C protocol vulnerable to a Bilateral Unknown Key Share (BUKS) and an Unilateral Unknown Key Share (UUKS) Attack, when precomputed ephemeral public keys are leaked. We point out some shades in the seCK model in multi-certification authorities setting. We propose an enhancement of the seCK model, which uses a liberal instantiation of the certification systems model from the ASICS framework, and allows reveal queries on precomputed ephemeral (public and private) keys. We propose a new protocol, termed eFHMQV, which in addition to provide the same efficiency as MQV, is particularly suited for implementations wherein a trusted device is used together with untrusted host machine. In such settings, the non-idle time computational effort of the device safely reduces to one digest computation, one integer multiplication, and one integer addition. The eFHMQV protocol meets our security definition, under the Random Oracle Model and the Gap Diffie-Hellman assumption.

P.B. Seye—Supported by the CEA-MITIC of UGB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    However, digests of the public keys are stored in the tamper proof device, so that it is possible to verify that the keys were not altered.

References

  1. Basin, D., Cremers, C.: Modeling and analyzing security in the presence of compromising adversaries. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp. 340–356. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15497-3_21

    Chapter  Google Scholar 

  2. Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 273–289. Springer, Heidelberg (2004). doi:10.1007/978-3-540-28628-8_17

    Chapter  Google Scholar 

  3. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994). doi:10.1007/3-540-48329-2_21

    Chapter  Google Scholar 

  4. Boyd, C., Mathuria, A.: Protocols for Authentication and Key Establishment. Springer, Heidelberg (2003). doi:10.1007/978-3-662-09527-0

    Book  MATH  Google Scholar 

  5. Boyd, C., Cremers, C., Feltz, M., Paterson, K.G., Poettering, B., Stebila, D.: ASICS: authenticated key exchange security incorporating certification systems. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 381–399. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40203-6_22

    Chapter  Google Scholar 

  6. Boyd, C., Cremers, C., Feltz, M., Paterson, K.G., Poettering, B., Stebila, D.: ASICS: Authenticated key exchange security incorporating certification systems. Cryptology ePrint Archive: Report 2013/398

    Google Scholar 

  7. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453–474. Springer, Heidelberg (2001). doi:10.1007/3-540-44987-6_28

    Chapter  Google Scholar 

  8. Chen, L., Tang, Q.: Bilateral unknown key-share attacks in key agreement protocols. J. Univ. Comput. Sci. 14(3), 416–440 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Cremers, C., Feltz, M.: Beyond eCK: perfect forward secrecy under actor compromise and ephemeral-key reveal. Des. Codes Crypt. 74(1), 183–218 (2013). Springer

    Article  MathSciNet  MATH  Google Scholar 

  10. Diffie, W., Van Orschot, P.C., Wiener, M.J.: Authentication and authenticated key exchanges. Des. Codes Crypt. 2(2), 107–125 (1992). Springer

    Article  MathSciNet  Google Scholar 

  11. Ducklin, P.: Serious security: Google finds fake but trusted SSL certificates for its domains, made in France. http://tinyurl.com/hrmo8pa

  12. FOX IT: Black Tulip: report of the investigation into the DigiNotar Certificate Authority breach. http://preview.tinyurl.com/lj6938c

  13. Güneysu, T., Pfeiffer, G., Paar, C., Schimmler, M.: Three years of evolution: cryptanalysis with COPACOBANA. In: Workshop Record of “Special-Purpose Hardware for Attacking Cryptographic Systems”–SHARCS 2009 (2009)

    Google Scholar 

  14. Huq, N.: PoS RAM Scraper Malware: Past, Present, and Future. A Trend Micro Research Paper (2014). http://tinyurl.com/jcwc8wz

  15. Kaliski, B.S.: An unknown key-share attack on the MQV key agreement protocol. ACM Trans. Inf. Syst. Secur. (TISSEC) 4(3), 275–288 (2001). ACM

    Article  Google Scholar 

  16. Krawczyk, H.: SIGMA: the ‘SIGn-and-MAc’ approach to authenticated Diffie-Hellman and its use in the IKE protocols. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 400–425. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45146-4_24

    Chapter  Google Scholar 

  17. Krawczyk, H.: HMQV: a hight performance secure Diffie-Hellman protocol. Cryptology ePrint Archive, Report 2005/176 (2005)

    Google Scholar 

  18. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg (2005). doi:10.1007/11535218_33

    Chapter  Google Scholar 

  19. Krawczyk, H.: HMQV in IEEE P1363. Submission to the IEEE P1363 working group. http://tinyurl.com/opjqknd

  20. Kumar, S., Paar, C., Pelzl, J., Pfeiffer, G., Rupp, A., Schimmler, M.: How to break DES for 8,980. In: International Workshop on Special-Purpose Hardware for Attacking Cryptographic Systems – SHARCS’06, Cologne, Germany, April 2006

    Google Scholar 

  21. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784, pp. 1–16. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75670-5_1

    Chapter  Google Scholar 

  22. Law, L., Menezes, A., Qu, M., Solinas, J., Vanstone, S.: An efficient protocol for authenticated key agreement. Des. Codes Crypt. 28, 119–134 (2003). Springer

    Article  MathSciNet  MATH  Google Scholar 

  23. Menezes, A., Van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996)

    Book  MATH  Google Scholar 

  24. Menezes, A., Ustaoglu, B.: Comparing the pre- and post-specified peer models for key agreement. Int. J. Appl. Crypt. 1(3), 236–250 (2009). Inderscience

    Article  MathSciNet  MATH  Google Scholar 

  25. Sarr, A.P., Elbaz–Vincent, P.: On the security of the (F)HMQV protocol. In: Pointcheval, D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2016. LNCS, vol. 9646, pp. 207–224. Springer, Cham (2016). doi:10.1007/978-3-319-31517-1_11

    Chapter  Google Scholar 

  26. Sarr, A.P., Elbaz-Vincent, P., Bajard, J.-C.: A secure and efficient authenticated Diffie–Hellman protocol. In: Martinelli, F., Preneel, B. (eds.) EuroPKI 2009. LNCS, vol. 6391, pp. 83–98. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16441-5_6

    Chapter  Google Scholar 

  27. Sarr, A.P., Elbaz-Vincent, P., Bajard, J.C.: A secure and efficient authenticated Diffie-Hellman protocol. Cryptology ePrint Archive: Report 2009/408

    Google Scholar 

  28. Sarr, A.P., Elbaz-Vincent, P., Bajard, J.-C.: A new security model for authenticated key agreement. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 219–234. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15317-4_15

    Chapter  Google Scholar 

  29. Shoup, V.: On formal models for secure key exchange. Cryptology ePrint Archive, 1999/012 (1999)

    Google Scholar 

  30. Trend Labs Security Intelligence Blog: RawPOS Technical Brief. http://tinyurl.com/joyazja

  31. TCG: Trusted Platform Module Library Part 3: Commands, Level 00 Revision 01.38 (2016)

    Google Scholar 

  32. Ustaoglu, B.: Obtaining a secure and efficient key agreement protocol from (H)MQV and NAXOS. Des. Codes Crypt. 46(3), 329–342 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. VISA Data Security Alert: Retail Merchants Targeted by Memory-Parsing Malware 2013. http://tinyurl.com/j3duvlg

  34. Yao, A.C., Zhao, Y.: Deniable internet key exchange. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 329–348. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13708-2_20

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Augustin P. Sarr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Seye, P.B., Sarr, A.P. (2017). Enhanced Modelling of Authenticated Key Exchange Security. In: Livraga, G., Mitchell, C. (eds) Security and Trust Management. STM 2017. Lecture Notes in Computer Science(), vol 10547. Springer, Cham. https://doi.org/10.1007/978-3-319-68063-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68063-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68062-0

  • Online ISBN: 978-3-319-68063-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics