Skip to main content

Image Segmentation by Deep Community Detection Approach

  • Conference paper
  • First Online:
Ubiquitous Networking (UNet 2017)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 10542))

Included in the following conference series:

Abstract

To address the problem of segmenting an image into homogeneous communities this paper proposes an efficient algorithm to detect deep communities in the image by maximizing at each stage a new centrality measure, called the local Fiedler vector centrality (LFVC). This measure is associated with the sensitivity of algebraic connectivity to node removals. We show that a greedy node removal strategy, based on iterative maximization of LFVC, has bounded performance loss relative to the optimal, but intractable, combinatorial batch removal strategy. A remarkable feature of this method is the ability to segments the image automatically into homogeneous regions by maximizing the LFVC value in the constructed network from the image. The performance of the proposed algorithm is evaluated on Berkeley Segmentation Database and compared with some well-known methods. Experiments show that the greedy LFVC strategy can efficiently extract deep communities from the image and can achieve much better segmentation results compared to the other known algorithms in terms of qualitative and quantitative accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  2. Haralick, R.M., Shapiro, L.G.: Image segmentation techniques. Comput. Vis. Graph. Image Process. 29(1), 100–132 (1985)

    Article  Google Scholar 

  3. Deng, Y., Kenney, C., Moore, M.S., et al.: Peer group filtering and perceptual color image quantization. In: Proceedings of the 1999 IEEE International Symposium on Circuits and Systems, ISCAS 1999, pp. 21–24. IEEE (1999)

    Google Scholar 

  4. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Nat. Acad. Sci. 99(12), 7821–7826 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Newman, M.E.J.: Modularity and community structure in networks. Proc. Nat. Acad. Sci. 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  6. Chung, F.R.K.: Spectral Graph Theory. American Mathematical Soc., Providence (1997)

    MATH  Google Scholar 

  7. Fiedler, M.: Algebraic connectivity of graphs. Czech. Math. J. 23(2), 298–305 (1973)

    MATH  MathSciNet  Google Scholar 

  8. Christoudias, C.M., Georgescu, B., Meer, P.: Synergism in low level vision. In: Proceedings of the 16th International Conference on Pattern Recognition, pp. 150–155. IEEE (2002)

    Google Scholar 

  9. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  10. Sabidussi, G.: The centrality index of a graph. Psychometrika 31(4), 581–603 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  11. Wen, H., Leicht, E.A., D’Souza, R.M.: Improving community detection in networks by targeted node removal. Phys. Rev. E 83(1), 016114 (2011)

    Article  Google Scholar 

  12. Pothen, A., Simon, H.D., Liou, K.-P.: Partitioning sparse matrices with eigenvectors of graphs. SIAM J. Matrix Anal. Appl. 11(3), 430–452 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  13. von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  14. Alon, N., Krivelevich, M., Sudakov, B.: Finding a large hidden clique in a random graph. Random Struct. Algorithms 13(3–4), 457–466 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Unnikrishnan, R., Pantofaru, C., Hebert, M.: Toward objective evaluation of image segmentation algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 929–944 (2007)

    Article  Google Scholar 

  16. Chen, P.-Y., Hero, A.O.: Deep community detection. IEEE Trans. Signal Process. 63(21), 5706–5719 (2015). MLA

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youssef Mourchid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mourchid, Y., El Hassouni, M., Cherifi, H. (2017). Image Segmentation by Deep Community Detection Approach. In: Sabir, E., García Armada, A., Ghogho, M., Debbah, M. (eds) Ubiquitous Networking. UNet 2017. Lecture Notes in Computer Science(), vol 10542. Springer, Cham. https://doi.org/10.1007/978-3-319-68179-5_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68179-5_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68178-8

  • Online ISBN: 978-3-319-68179-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics