Skip to main content

A Rules Based Decision Making Model for Business Impact Analysis: The Business Function Criticality Classifier

  • Conference paper
  • First Online:
Enterprise and Organizational Modeling and Simulation (EOMAS 2017)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 298))

Included in the following conference series:

  • 477 Accesses

Abstract

The present article aims to present a rules based decision making model for a crucial business impact analysis task, namely the non-arbitrary criticality ranking of an individual business function. The model aims to serve as a classifier for the specific task. The components of the developed classifier are the inducted decision trees based on a data set and their supporting business rules. Moreover a business process representation with the Business Object Relation Modeling approach is included. The data set for creating the classifier has been based on computations of specific recovery complexity parameters. The parameters are included in the proposed by the author business continuity points method for estimating the recovery complexity of a business function, which, in its turn, stems from the use case points approach for software complexity estimation. The current work includes primary results of computations based on the default recovery case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Based on the Use Case Points no units are used for the UBFRP, TRF, URF, ERF and ABFRP.

  2. 2.

    Apart from the default classification path, alternative recovery cases are developed by the author. The derivation of the results regarding the statistical tests for the standardization of these paths are still in progress.

References

  1. Andreescu, A.I., Mircea, M.: Perspectives on the role of business rules in database design. Database Syst. J. 3(1), 59–67 (2012)

    Google Scholar 

  2. Brás, J., Guerreiro, S.: Designing business continuity processes using DEMO. In: Pergl, R., Molhanec, M., Babkin, E., Fosso Wamba, S. (eds.) EOMAS 2016. LNBIP, vol. 272, pp. 154–171. Springer, Cham (2016). doi:10.1007/978-3-319-49454-8_11

    Chapter  Google Scholar 

  3. Breiman, L., Friedman, J.H., Olshen, R., Stone, C.L.: Classification and Regression Trees. Chapman and Hall, New York (1984)

    MATH  Google Scholar 

  4. Caelli, W.J., Kwok, L.-F., Longley, D.: A business continuity management simulator. In: Rannenberg, K., Varadharajan, V., Weber, C. (eds.) SEC 2010. IFIP AICT, vol. 330, pp. 9–18. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15257-3_2

    Chapter  Google Scholar 

  5. Chen, G.: Decision-making model of business continuity management. In: Jin, D., Lin, S. (eds.) Advances in Electronic Engineering, Communication and Management Vol.2. LNEE, vol. 140, pp. 285–289. Springer, Heidelberg (2012). doi:10.1007/978-3-642-27296-7_45

    Chapter  Google Scholar 

  6. de Micheaux, P.L., Drouilhet, R., Liquet, B.: The R Software: Fundamentals of Programming and Statistical Analysis. SC, vol. 40. Springer, New York (2013). doi:10.1007/978-1-4614-9020-3

    MATH  Google Scholar 

  7. Gallagher, M.: Business Continuity Management - How to Protect Your Company from Danger. Prentice Hall, London (2003)

    Google Scholar 

  8. Gibson, D.: Managing Risks in Information Systems. Jones & Bartlett Learning, Sudbury (2011)

    Google Scholar 

  9. GrÄ…bczewski, K.: Meta-Learning in Decision Tree Induction. Springer, Cham (2014). doi:10.1007/978-3-319-00960-5

    Book  Google Scholar 

  10. Hřebík, R., Merunka, V., Kosejková, Z., Kupka, P.: Object-oriented conceptual modeling and simulation of health care processes. In: Barjis, J., Pergl, R., Babkin, E. (eds.) EOMAS 2015. LNBIP, vol. 231, pp. 49–60. Springer, Cham (2015). doi:10.1007/978-3-319-24626-0_4

    Chapter  Google Scholar 

  11. ISO22301: Business Continuity Management. British Standards Institution (2012)

    Google Scholar 

  12. Karner, G.: Resource estimation for objectory projects. In: Systems SF AB (1993)

    Google Scholar 

  13. Knott, R., Merunka, V., Polak, J.: The BORM method: a third generation object-oriented methodology. In: Liu, L., Roussev, B. (eds.) Management of the Object-Oriented Development Process, pp. 337–360. Idea Group Publishing, Hershey (2006). doi:10.4018/978-1-59140-604-4.ch015, ISBN 978-1-59140-604-4

  14. Liu, B.: Supervised learning. Web Data Mining. Data-Centric Systems and Applications, pp. 63–132. Springer, Berlin, Heidelberg (2011). doi:10.1007/978-3-642-19460-3_3

    Chapter  Google Scholar 

  15. Merunka, V.: Instance-level modeling and simulation using lambda-calculus and object-oriented environments. In: Barjis, J., Eldabi, T., Gupta, A. (eds.) EOMAS 2011. LNBIP, vol. 88, pp. 145–158. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24175-8_11

    Chapter  Google Scholar 

  16. Merunka, V., Merunková, I.: Role of OBA approach in object-oriented process modelling and simulation. In: Barjis, J., Gupta, A., Meshkat, A. (eds.) EOMAS 2013. LNBIP, vol. 153, pp. 74–84. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41638-5_5

    Chapter  Google Scholar 

  17. Molhanec, M., Merunka, V.: BORM – Agile Modelling for Business Intelligence. IGI Global, Pennsylvania (2012)

    Google Scholar 

  18. Nedvedova, K.: Flood Protection in Historical Towns. Sustainable Development, vol. 168. WIT Press, Southampton (2015)

    Google Scholar 

  19. Picka, M., Pergl, R., Šplichal, P.: BORM Model Transformation. Systémová Integrace 18(2), 112–123 (2011)

    Google Scholar 

  20. Podaras, A.: A non-arbitrary method for estimating IT business function recovery complexity via software complexity. In: Aveiro, D., Pergl, R., Valenta, M. (eds.) EEWC 2015. LNBIP, vol. 211, pp. 144–159. Springer, Cham (2015). doi:10.1007/978-3-319-19297-0_10

    Chapter  Google Scholar 

  21. Podaras, A., Antlová, K., Motejlek, J.: Information management tools for implementing an effective enterprise business continuity strategy. E&M Ekonomie Manage. 2016(1), 165–182 (2016)

    Article  Google Scholar 

  22. Podloucký, M., Pergl, R., Kroha, P.: Revisiting the BORM OR diagram composition pattern. In: Barjis, J., Pergl, R., Babkin, E. (eds.) EOMAS 2015. LNBIP, vol. 231, pp. 102–113. Springer, Cham (2015). doi:10.1007/978-3-319-24626-0_8

    Chapter  Google Scholar 

  23. Polák, J., Merunka, V., Carda. A.: Art system design of object-oriented development of information systems by using the original method BORM, Prague, Grada (in Czech) (2003)

    Google Scholar 

  24. R-Studio Homepage. https://www.rstudio.com. Accessed 20 Mar 2017

  25. Starr, R.: Enterprise Resilience: Managing Risk in the Networked Economy. http://www.boozallen.com/content/dam/boozallen/media/file/Enterprise_Resilience_Report.pdf Accessed 5 Mar 2017

  26. Uhnák, P., Pergl, R.: The OpenPonk modeling platform. In: Proceedings of the 11th Edition of the International Workshop on Smalltalk Technologies, pp. 1–12. ACM, New York (2016)

    Google Scholar 

  27. Witt, G.: Writing Effective Business Rules. Morgan Kaufmann, Amsterdam (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios Podaras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Podaras, A. (2017). A Rules Based Decision Making Model for Business Impact Analysis: The Business Function Criticality Classifier. In: Pergl, R., Lock, R., Babkin, E., Molhanec, M. (eds) Enterprise and Organizational Modeling and Simulation. EOMAS 2017. Lecture Notes in Business Information Processing, vol 298. Springer, Cham. https://doi.org/10.1007/978-3-319-68185-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68185-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68184-9

  • Online ISBN: 978-3-319-68185-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics