Skip to main content

Multimodal Semantic Simulations of Linguistically Underspecified Motion Events

  • Conference paper
  • First Online:
Spatial Cognition X (Spatial Cognition 2016, KogWis 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10523))

Abstract

This paper details the technical functionality of VoxSim, a system for generating three-dimensional visual simulations of natural language motion expressions. We use a rich formal model of events and their participants to generate simulations that satisfy the minimal constraints entailed by an utterance and its minimal model, relying on real-world semantic knowledge of physical objects and motion events. This paper outlines technical considerations of such a system, and discusses the implementation of the aforementioned semantic models as well as VoxSim’s suitability as a platform for examining linguistic and spatial reasoning questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The VoxSim Unity project and source may be found at https://github.com/VoxML/VoxSim/. The latest stable builds are posted at http://www.voxicon.net/.

  2. 2.

    See [39] for details on discriminating and referencing objects through sortal and scalar descriptions.

  3. 3.

    We ignore here the idiomatic non-spatial reading of on TV, denoting “the information content available through the medium ‘TV’.”

References

  1. Albath, J., Leopold, J.L., Sabharwal, C.L., Maglia, A.M.: RCC-3D: qualitative spatial reasoning in 3D. In: CAINE, pp. 74–79 (2010)

    Google Scholar 

  2. Allen, J.: Towards a general theory of action and time. Artif. Intell. 23, 123–154 (1984)

    Article  MATH  Google Scholar 

  3. Andor, D., Alberti, C., Weiss, D., Severyn, A., Presta, A., Ganchev, K., Petrov, S., Collins, M.: Globally normalized transition-based neural networks. arXiv preprint arXiv:1603.06042 (2016)

  4. Bergen, B.K.: Louder Than Words: The New Science of How the Mind Makes Meaning. Basic Books, New York (2012)

    Google Scholar 

  5. Bhatt, M., Loke, S.: Modelling dynamic spatial systems in the situation calculus. Spat. Cogn. Comput. 8, 86–130 (2008)

    Google Scholar 

  6. Blackburn, P., Bos, J.: Computational semantics. THEORIA. Int. J. Theory Hist. Found. Sci. 18(1) (2008)

    Google Scholar 

  7. Chang, A., Monroe, W., Savva, M., Potts, C., Manning, C.D.: Text to 3D scene generation with rich lexical grounding. arXiv preprint arXiv:1505.06289 (2015)

  8. Choi, J.D., McCallum, A.: Transition-based dependency parsing with selectional branching. In: ACL (1), pp. 1052–1062 (2013)

    Google Scholar 

  9. Coyne, B., Sproat, R.: Wordseye: an automatic text-to-scene conversion system. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 487–496. ACM (2001)

    Google Scholar 

  10. Dill, K.: A game AI approach to autonomous control of virtual characters. In: Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) (2011)

    Google Scholar 

  11. Do, T., Krishnaswamy, N., Pustejovsky, J.: ECAT: event capture annotation tool. In: Proceedings of ISA-12: International Workshop on Semantic Annotation (2016)

    Google Scholar 

  12. Do, T., Pustejovsky, J.: Fine-grained event learning of human-object interaction with LSTM-CRF. In: Proceedings of European Symposium on Artificial Neural (ESANN 2017) (2017)

    Google Scholar 

  13. Dzifcak, J., Scheutz, M., Baral, C., Schermerhorn, P.: What to do and how to do it: translating natural language directives into temporal and dynamic logic representation for goal management and action execution. In: IEEE International Conference on Robotics and Automation, ICRA 2009, pp. 4163–4168. IEEE (2009)

    Google Scholar 

  14. Feldman, J.: From Molecule to Metaphor: A Neural Theory of Language. MIT Press, Cambridge (2006)

    Google Scholar 

  15. Ferguson, G., Allen, J.F., et al.: Trips: an integrated intelligent problem-solving assistant. In: AAAI/IAAI, pp. 567–572 (1998)

    Google Scholar 

  16. Forbus, K.D., Mahoney, J.V., Dill, K.: How qualitative spatial reasoning can improve strategy game AIs. IEEE Intell. Syst. 17(4), 25–30 (2002)

    Article  Google Scholar 

  17. Galton, A.: Towards an integrated logic of space, time, and motion. In: Bajcsy, R. (ed.) Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence (IJCAI 1993), pp. 1550–1555. Morgan Kaufmann, San Mateo (1993)

    Google Scholar 

  18. Galton, A.: Qualitative Spatial Change. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  19. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: ICLP/SLP, vol. 88, pp. 1070–1080 (1988)

    Google Scholar 

  20. Gerber, R., Nagel, H.H.: Representation of occurrences for road vehicle traffic. Artif. Intell. 172(4), 351–391 (2008)

    Article  Google Scholar 

  21. Gibson, J.J., Reed, E.S., Jones, R.: Reasons for Realism: Selected Essays of James J. Gibson. Lawrence Erlbaum Associates, Hillsdale (1982)

    Google Scholar 

  22. Goldman, A.I.: Simulating Minds: The Philosophy, Psychology, and Neuroscience of Mindreading. Oxford University Press, Oxford (2006)

    Book  Google Scholar 

  23. Goldstone, W.: Unity Game Development Essentials. Packt Publishing Ltd., Birmingham (2009)

    Google Scholar 

  24. Krishnaswamy, N.: Monte-Carlo Simulation Generation Through Operationalization of Spatial Primitives. Ph.D. thesis, Brandeis University (2017)

    Google Scholar 

  25. Kurata, Y., Egenhofer, M.: The 9+ intersection for topological relations between a directed line segment and a region. In: Gottfried, B. (ed.) Workshop on Behaviour and Monitoring Interpretation, Germany, pp. 62–76, September 2007

    Google Scholar 

  26. Levin, B.: English Verb Class and Alternations: A Preliminary Investigation. University of Chicago Press, Chicago (1993)

    Google Scholar 

  27. Mani, I., Pustejovsky, J.: Interpreting Motion: Grounded Representations for Spatial Language. Oxford University Press, Oxford (2012)

    Book  Google Scholar 

  28. Mark, D., Egenhofer, M.: Topology of prototypical spatial relations between lines and regions in English and Spanish. In: Proceedings of the Twelfth International Symposium on Computer-Assisted Cartography, vol. 4, pp. 245–254 (1995)

    Google Scholar 

  29. Markman, K.D., Klein, W.M., Suhr, J.A.: Handbook of Imagination and Mental Simulation. Psychology, New York (2012)

    Google Scholar 

  30. McDonald, D., Pustejovsky, J.: On the representation of inferences and their lexicalization. In: Advances in Cognitive Systems, vol. 3 (2014)

    Google Scholar 

  31. Moratz, R., Fischer, K., Tenbrink, T.: Cognitive modeling of spatial reference for human-robot interaction. Int. J. Artif. Intell. Tools 10(04), 589–611 (2001)

    Article  Google Scholar 

  32. Muller, P.: A qualitative theory of motion based on spatio-temporal primitives. In: Cohn, A.G., Schubert, L., Shapiro, S.C. (eds.) KR 1998: Principles of Knowledge Representation and Reasoning, pp. 131–141. Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

  33. Narayanan, S.S.: KARMA: Knowledge-Based Active Representations for Metaphor and Aspect. University of California, Berkeley (1997)

    Google Scholar 

  34. Naumann, R.: A dynamic approach to aspect: verbs as programs. Submitted to J. Semant. (1999). University of Düsseldorf

    Google Scholar 

  35. Pustejovsky, J.: The Generative Lexicon. MIT Press, Cambridge (1995)

    Google Scholar 

  36. Pustejovsky, J.: Dynamic event structure and habitat theory. In: Proceedings of the 6th International Conference on Generative Approaches to the Lexicon (GL 2013), pp. 1–10. ACL (2013)

    Google Scholar 

  37. Pustejovsky, J., Krishnaswamy, N.: Generating simulations of motion events from verbal descriptions. In: Lexical and Computational Semantics (*SEM 2014), p. 99 (2014)

    Google Scholar 

  38. Pustejovsky, J., Krishnaswamy, N.: VoxML: a visualization modeling language. In: Chair, N.C.C., Choukri, K., Declerck, T., Goggi, S., Grobelnik, M., Maegaard, B., Mariani, J., Mazo, H., Moreno, A., Odijk, J., Piperidis, S. (eds.) Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016). European Language Resources Association (ELRA), Paris, May 2016

    Google Scholar 

  39. Pustejovsky, J., Krishnaswamy, N.: Envisioning language: The semantics of multimodal simulations (forthcoming)

    Google Scholar 

  40. Pustejovsky, J., Moszkowicz, J.: The qualitative spatial dynamics of motion. J. Spat. Cogn. Comput. 11, 15–44 (2011)

    Google Scholar 

  41. Raman, V., Lignos, C., Finucane, C., Lee, K.C., Marcus, M.P., Kress-Gazit, H.: Sorry dave, i’m afraid i can’t do that: Explaining unachievable robot tasks using natural language. In: Robotics: Science and Systems, vol. 2, pp. 2–1. IEEE (2013)

    Google Scholar 

  42. Randell, D., Cui, Z., Cohn, A.: A spatial logic based on regions and connections. In: Kaufmann, M. (ed.) Proceedings of the 3rd International Conference on Knowledge Representation and Reasoning, San Mateo, pp. 165–176 (1992)

    Google Scholar 

  43. Siskind, J.M.: Grounding the lexical semantics of verbs in visual perception using force dynamics and event logic. J. Artif. Intell. Res. (JAIR) 15, 31–90 (2001)

    MATH  Google Scholar 

  44. Skubic, M., Perzanowski, D., Blisard, S., Schultz, A., Adams, W., Bugajska, M., Brock, D.: Spatial language for human-robot dialogs. IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 34(2), 154–167 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the reviewers for their perceptive and helpful comments. This work is supported by a contract with the US Defense Advanced Research Projects Agency (DARPA), Contract W911NF-15-C-0238. Approved for Public Release, Distribution Unlimited. The views expressed are those of the authors and do not reflect the official policy or position of the Department of Defense or the U.S. Government. We would like to thank Scott Friedman, David McDonald, Marc Verhagen, and Mark Burstein for their discussion and input on this topic. All errors and mistakes are, of course, the responsibilities of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil Krishnaswamy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krishnaswamy, N., Pustejovsky, J. (2017). Multimodal Semantic Simulations of Linguistically Underspecified Motion Events. In: Barkowsky, T., Burte, H., Hölscher, C., Schultheis, H. (eds) Spatial Cognition X. Spatial Cognition KogWis 2016 2016. Lecture Notes in Computer Science(), vol 10523. Springer, Cham. https://doi.org/10.1007/978-3-319-68189-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68189-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68188-7

  • Online ISBN: 978-3-319-68189-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics