Skip to main content

Personal Networks of Scientific Collaborators: A Large Scale Experimental Analysis of Their Evolution

  • Conference paper
  • First Online:
Information Search, Integration, and Personlization (ISIP 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 760))

  • 198 Accesses

Abstract

When an individual joins an Online Social Network (OSN), he creates connections by interacting with the other users directly or indirectly and forms its own Online Personal Network (OPN). These OPNs are not static, but they evolve over time as new people join or quit them and as new relationships are established or old ones broken. Understanding how OPNs are evolving is still missing in the current literature, while OSNs’ evolution was widely addressed and many models were proposed. In this paper, we propose to fill this gap by performing an experimental analysis over a large set of real OPNs by the mean of the computation of metrics that characterize their structure. We examine how these metrics behave when the OPNs change over time in order to discover the properties driving the evolution of their structure, which can help in providing evolution models dedicated to OPNs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    https://aminer.org/citation.

References

  1. Amblard, F., Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: On the temporal analysis of scientific network evolution. In: 2011 International Conference on Computational Aspects of Social Networks (CASoN), pp. 169–174. IEEE (2011)

    Google Scholar 

  2. Arnaboldi, V., Conti, M., Passarella, A., Dunbar, R.: Dynamics of personal social relationships in online social networks: a study on twitter. In: Proceedings of the First ACM Conference on Online Social Networks, pp. 15–26. ACM (2013)

    Google Scholar 

  3. Barabâsi, A.-L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., Vicsek, T.: Evolution of the social network of scientific collaborations. Physica A 311(3), 590–614 (2002)

    Article  MathSciNet  Google Scholar 

  4. Burt, R.S.: Le capital social, les trous structuraux et l’entrepreneur. Revue française de sociologie, pp. 599–628 (1995)

    Google Scholar 

  5. Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical data. SIAM Rev. 51(4), 661–703 (2009)

    Article  MathSciNet  Google Scholar 

  6. Djemili, S., Marinica, C., Malek, M., Kotzinos, D.: A definitions’ framework for personal/egocentric online social networks. In: 7éme conférence sur les modéles et l’analyse des réseaux: Approches mathématiques et informatiques (MARAMI’16) (2016)

    Google Scholar 

  7. Ebel, H., Davidsen, J., Bornholdt, S.: Dynamics of social networks. Complexity 8(2), 24–27 (2002)

    Article  MathSciNet  Google Scholar 

  8. Elmacioglu, E., Lee, D.: On six degrees of separation in dblp-db and more. ACM SIGMOD Rec. 34(2), 33–40 (2005)

    Article  Google Scholar 

  9. Estrada, E.: When local and global clustering of networks diverge. Linear Algebra Appl. 488, 249–263 (2016)

    Article  MathSciNet  Google Scholar 

  10. Fisher, D.: Using egocentric networks to understand communication. IEEE Internet Comput. 9(5), 20–28 (2005)

    Article  Google Scholar 

  11. Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw. 1(3), 215–239 (1978)

    Article  Google Scholar 

  12. Freeman, L.C.: Centered graphs and the structure of ego networks. Math. Soc. Sci. 3(3), 291–304 (1982)

    Article  MathSciNet  Google Scholar 

  13. Goel, S., Muhamad, R., Watts, D.: Social search in small-world experiments. In: Proceedings of the 18th International Conference on World Wide Web, pp. 701–710. ACM (2009)

    Google Scholar 

  14. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012)

    Article  Google Scholar 

  15. Lattanzi, S., Panconesi, A., Sivakumar, D.: Milgram-routing in social networks. In: Proceedings of the 20th International Conference on World Wide Web, pp. 725–734. ACM (2011)

    Google Scholar 

  16. Li, M., O’Riordan, C.: The effect of clustering coefficient and node degree on the robustness of cooperation. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 2833–2839. IEEE (2013)

    Google Scholar 

  17. Moriano, P., Finke, J.: On the formation of structure in growing networks. J. Stat. Mech. Theory Exp. 2013(06), P06010 (2013)

    Article  MathSciNet  Google Scholar 

  18. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)

    Article  MathSciNet  Google Scholar 

  19. O’malley, A.J., Arbesman, S., Steiger, D.M., Fowler, J.H., Christakis, N.A.: Egocentric social network structure, health, and pro-social behaviors in a national panel study of americans. PLoS ONE 7(5), e36250 (2012)

    Article  Google Scholar 

  20. Sarmento, R., Cordeiro, M., Gama, J.: Visualization of evolving large scale ego-networks. In: Proceedings of the 30th Annual ACM Symposium on Applied Computing, pp. 960–962. ACM (2015)

    Google Scholar 

  21. Sutcliffe, A., Dunbar, R., Binder, J., Arrow, H.: Relationships and the social brain: integrating psychological and evolutionary perspectives. Br. J. Psychol. 103(2), 149–168 (2012)

    Article  Google Scholar 

  22. Travers, J., Milgram, S.: The small world problem. Phychology Today 1, 61–67 (1967)

    Google Scholar 

  23. Travers, J., Milgram, S.: An experimental study of the small world problem. Sociometry 32, 425–443 (1969)

    Article  Google Scholar 

  24. Viswanath, B., Mislove, A., Cha, M., Gummadi, K.P.: On the evolution of user interaction in facebook. In: Proceedings of the 2nd ACM Workshop on Online Social Networks, pp. 37–42. ACM (2009)

    Google Scholar 

  25. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world’networks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

  26. Yanhong, W., Pitipornvivat, N., Zhao, J., Yang, S., Huang, G., Huamin, Q.: egoslider: visual analysis of egocentric network evolution. IEEE Trans. Vis. Comput. Graph. 22(1), 260–269 (2016)

    Article  Google Scholar 

  27. Zhao, J., Glueck, M., Chevalier, F., Wu, Y., Khan, A.: Egocentric analysis of dynamic networks with egolines. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp. 5003–5014. ACM (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarra Djemili .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Djemili, S., Marinica, C., Malek, M., Kotzinos, D. (2017). Personal Networks of Scientific Collaborators: A Large Scale Experimental Analysis of Their Evolution. In: Kotzinos, D., Laurent, D., Petit, JM., Spyratos, N., Tanaka, Y. (eds) Information Search, Integration, and Personlization. ISIP 2016. Communications in Computer and Information Science, vol 760. Springer, Cham. https://doi.org/10.1007/978-3-319-68282-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68282-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68281-5

  • Online ISBN: 978-3-319-68282-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics