Skip to main content

Stochastic Development Regression Using Method of Moments

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10589))

Included in the following conference series:

  • 2464 Accesses

Abstract

This paper considers the estimation problem arising when inferring parameters in the stochastic development regression model for manifold valued non-linear data. Stochastic development regression captures the relation between manifold-valued response and Euclidean covariate variables using the stochastic development construction. It is thereby able to incorporate several covariate variables and random effects. The model is intrinsically defined using the connection of the manifold, and the use of stochastic development avoids linearizing the geometry. We propose to infer parameters using the Method of Moments procedure that matches known constraints on moments of the observations conditional on the latent variables. The performance of the model is investigated in a simulation example using data on finite dimensional landmark manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Banerjee, M., Chakraborty, R., Ofori, E., Okun, M.S., Vaillancourt, D.E., Vemuri, B.C.: A nonlinear regression technique for manifold valued data with applications to medical image analysis. In: 2016 IEEE Conference on CVPR, pp. 4424–4432, June 2016

    Google Scholar 

  2. Cornea, E., Zhu, H., Kim, P., Ibrahim, J.G.: The Alzheimer’s disease neuroimaging initiative. Regression models on Riemannian symmetric spaces. J. Roy. Stat. Soc. B 79, 463–482 (2017)

    Article  Google Scholar 

  3. Cragg, J.G.: Using higher moments to estimate the simple errors-in-variables model. Rand J. Econ. 28, S71–S91 (1997)

    Article  Google Scholar 

  4. Davis, B.C., Fletcher, P.T., Bullitt, E., Joshi, S.: Population shape regression from random design data. In: 2007 IEEE 11th International Conference on Computer Vision, pp. 1–7, October 2007

    Google Scholar 

  5. Fletcher, P.T.: Geodesic regression and the theory of least squares on Riemannian manifolds. Int. J. Comput. Vision 105, 171–185 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hazelton, M.L.: Methods of moments estimation. In: Lovric, M. (ed.) International Encyclopedia of Statistical Science, pp. 816–817. Springer, Heidelberg (2011). doi:10.1007/978-3-642-04898-2_364

    Chapter  Google Scholar 

  7. Hinkle, J., Muralidharan, P., Fletcher, P.T., Joshi, S.: Polynomial Regression on Riemannian Manifolds. arXiv:1201.2395 (2012)

  8. Hong, Y., Kwitt, R., Singh, N., Vasconcelos, N., Niethammer, M.: Parametric regression on the Grassmannian. IEEE Trans. Pattern Anal. Mach. Intell. 38(11), 2284–2297 (2016)

    Article  Google Scholar 

  9. Hsu, E.P.: Stochastic Analysis on Manifolds. American Mathematical Society, Providence (2002)

    Book  MATH  Google Scholar 

  10. Kühnel, L., Sommer, S.: Stochastic development regression on non-linear manifolds. In: Niethammer, M., Styner, M., Aylward, S., Zhu, H., Oguz, I., Yap, P.-T., Shen, D. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 53–64. Springer, Cham (2017). doi:10.1007/978-3-319-59050-9_5

    Chapter  Google Scholar 

  11. Lin, L., St Thomas, B., Zhu, H., Dunson, D.B.: Extrinsic local regression on manifold-valued data. arXiv:1508.02201, August 2015

  12. Niethammer, M., Huang, Y., Vialard, F.-X.: Geodesic regression for image time-series. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6892, pp. 655–662. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23629-7_80

    Chapter  Google Scholar 

  13. Nilsson, J., Sha, F., Jordan, M.I.: Regression on manifolds using kernel dimension reduction. In: Proceedings of the 24th ICML, pp. 697–704. ACM (2007)

    Google Scholar 

  14. Pal, M.: Consistent moment estimators of regression coefficients in the presence of errors in variables. J. Econom. 14(3), 349–364 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  15. Niethammer, M., Huang, Y., Vialard, F.-X.: Geodesic regression for image time-series. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6892, pp. 655–662. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23629-7_80

    Chapter  Google Scholar 

  16. Singh, N., Hinkle, J., Joshi, S., Fletcher, P.T.: Hierarchical geodesic models in diffeomorphisms. Int. J. Comput. Vision 117, 70–92 (2016)

    Article  MathSciNet  Google Scholar 

  17. Singh, N., Vialard, F.-X., Niethammer, M.: Splines for diffeomorphisms. Med. Image Anal. 25(1), 56–71 (2015)

    Article  Google Scholar 

  18. Younes, L.: Shapes and Diffeomorphisms. Springer, Heidelberg (2010)

    Book  MATH  Google Scholar 

  19. Yuan, Y., Zhu, H., Lin, W., Marron, J.S.: Local polynomial regression for symmetric positive definite matrices. J. Roy. Stat. Soc. Ser. B Stat. Methodol. 74(4), 697–719 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the CSGB Centre for Stochastic Geometry and Advanced Bioimaging funded by a grant from the Villum foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Line Kühnel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kühnel, L., Sommer, S. (2017). Stochastic Development Regression Using Method of Moments. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68445-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68444-4

  • Online ISBN: 978-3-319-68445-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics