Abstract
This paper considers the estimation problem arising when inferring parameters in the stochastic development regression model for manifold valued non-linear data. Stochastic development regression captures the relation between manifold-valued response and Euclidean covariate variables using the stochastic development construction. It is thereby able to incorporate several covariate variables and random effects. The model is intrinsically defined using the connection of the manifold, and the use of stochastic development avoids linearizing the geometry. We propose to infer parameters using the Method of Moments procedure that matches known constraints on moments of the observations conditional on the latent variables. The performance of the model is investigated in a simulation example using data on finite dimensional landmark manifolds.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Banerjee, M., Chakraborty, R., Ofori, E., Okun, M.S., Vaillancourt, D.E., Vemuri, B.C.: A nonlinear regression technique for manifold valued data with applications to medical image analysis. In: 2016 IEEE Conference on CVPR, pp. 4424–4432, June 2016
Cornea, E., Zhu, H., Kim, P., Ibrahim, J.G.: The Alzheimer’s disease neuroimaging initiative. Regression models on Riemannian symmetric spaces. J. Roy. Stat. Soc. B 79, 463–482 (2017)
Cragg, J.G.: Using higher moments to estimate the simple errors-in-variables model. Rand J. Econ. 28, S71–S91 (1997)
Davis, B.C., Fletcher, P.T., Bullitt, E., Joshi, S.: Population shape regression from random design data. In: 2007 IEEE 11th International Conference on Computer Vision, pp. 1–7, October 2007
Fletcher, P.T.: Geodesic regression and the theory of least squares on Riemannian manifolds. Int. J. Comput. Vision 105, 171–185 (2012)
Hazelton, M.L.: Methods of moments estimation. In: Lovric, M. (ed.) International Encyclopedia of Statistical Science, pp. 816–817. Springer, Heidelberg (2011). doi:10.1007/978-3-642-04898-2_364
Hinkle, J., Muralidharan, P., Fletcher, P.T., Joshi, S.: Polynomial Regression on Riemannian Manifolds. arXiv:1201.2395 (2012)
Hong, Y., Kwitt, R., Singh, N., Vasconcelos, N., Niethammer, M.: Parametric regression on the Grassmannian. IEEE Trans. Pattern Anal. Mach. Intell. 38(11), 2284–2297 (2016)
Hsu, E.P.: Stochastic Analysis on Manifolds. American Mathematical Society, Providence (2002)
Kühnel, L., Sommer, S.: Stochastic development regression on non-linear manifolds. In: Niethammer, M., Styner, M., Aylward, S., Zhu, H., Oguz, I., Yap, P.-T., Shen, D. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 53–64. Springer, Cham (2017). doi:10.1007/978-3-319-59050-9_5
Lin, L., St Thomas, B., Zhu, H., Dunson, D.B.: Extrinsic local regression on manifold-valued data. arXiv:1508.02201, August 2015
Niethammer, M., Huang, Y., Vialard, F.-X.: Geodesic regression for image time-series. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6892, pp. 655–662. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23629-7_80
Nilsson, J., Sha, F., Jordan, M.I.: Regression on manifolds using kernel dimension reduction. In: Proceedings of the 24th ICML, pp. 697–704. ACM (2007)
Pal, M.: Consistent moment estimators of regression coefficients in the presence of errors in variables. J. Econom. 14(3), 349–364 (1980)
Niethammer, M., Huang, Y., Vialard, F.-X.: Geodesic regression for image time-series. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6892, pp. 655–662. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23629-7_80
Singh, N., Hinkle, J., Joshi, S., Fletcher, P.T.: Hierarchical geodesic models in diffeomorphisms. Int. J. Comput. Vision 117, 70–92 (2016)
Singh, N., Vialard, F.-X., Niethammer, M.: Splines for diffeomorphisms. Med. Image Anal. 25(1), 56–71 (2015)
Younes, L.: Shapes and Diffeomorphisms. Springer, Heidelberg (2010)
Yuan, Y., Zhu, H., Lin, W., Marron, J.S.: Local polynomial regression for symmetric positive definite matrices. J. Roy. Stat. Soc. Ser. B Stat. Methodol. 74(4), 697–719 (2012)
Acknowledgements
This work was supported by the CSGB Centre for Stochastic Geometry and Advanced Bioimaging funded by a grant from the Villum foundation.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Kühnel, L., Sommer, S. (2017). Stochastic Development Regression Using Method of Moments. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-68445-1_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-68444-4
Online ISBN: 978-3-319-68445-1
eBook Packages: Computer ScienceComputer Science (R0)