Skip to main content

Regularized Barycenters in the Wasserstein Space

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10589))

Included in the following conference series:

Abstract

This paper is an overview of results that have been obtain in [2] on the convex regularization of Wasserstein barycenters for random measures supported on \({\mathbb R}^{d}\). We discuss the existence and uniqueness of such barycenters for a large class of regularizing functions. A stability result of regularized barycenters in terms of Bregman distance associated to the convex regularization term is also given. Additionally we discuss the convergence of the regularized empirical barycenter of a set of n iid random probability measures towards its population counterpart in the real line case, and we discuss its rate of convergence. This approach is shown to be appropriate for the statistical analysis of discrete or absolutely continuous random measures. In this setting, we propose an efficient minimization algorithm based on accelerated gradient descent for the computation of regularized Wasserstein barycenters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://mbi.osu.edu/2012/stwdescription.html.

References

  1. Agueh, M., Carlier, G.: Barycenters in the Wasserstein space. SIAM J. Math. Anal. 43(2), 904–924 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bigot, J., Cazelles, E., Papadakis, N.: Penalized barycenters in the Wasserstein space. Submitted. https://128.84.21.199/abs/1606.01025

  3. Bobkov, S., Ledoux, M.: One-dimensional empirical measures, order statistics and Kantorovich transport distances (2014). Book in preparation. http://perso.math.univ-toulouse.fr/ledoux/files/2013/11/Order.statistics.10.pdf

  4. Burger, M., Osher, S.: Convergence rates of convex variational regularization. Inverse Prob. 20(5), 1411 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cuturi, M., Peyré, G.: A smoothed dual approach for variational Wasserstein problems. SIAM J. Imaging Sci. 9(1), 320–343 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fréchet, M.: Les éléments aléatoires de nature quelconque dans un espace distancié. Ann. Inst. H. Poincaré Sect. B Prob. Stat. 10, 235–310 (1948)

    Google Scholar 

  7. Kneip, A., Utikal, K.J.: Inference for density families using functional principal component analysis. J. Am. Stat. Assoc. 96(454), 519–542 (2001). With comments and a rejoinder by the authors

    Article  MATH  MathSciNet  Google Scholar 

  8. Panaretos, V.M., Zemel, Y.: Amplitude and phase variation of point processes. Ann. Stat. 44(2), 771–812 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  9. Petersen, A., Müller, H.G.: Functional data analysis for density functions by transformation to a Hilbert space. Ann. Stat. 44(1), 183–218 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  10. Wu, W., Srivastava, A.: An information-geometric framework for statistical inferences in the neural spike train space. J. Comput. Neurosci. 31(3), 725–748 (2011)

    Article  MathSciNet  Google Scholar 

  11. Zhang, Z., Müller, H.-G.: Functional density synchronization. Comput. Stat. Data Anal. 55(7), 2234–2249 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgment

This work has been carried out with financial support from the French State, managed by the French National Research Agency (ANR) in the frame of the GOTMI project (ANR-16-CE33-0010-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elsa Cazelles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Cazelles, E., Bigot, J., Papadakis, N. (2017). Regularized Barycenters in the Wasserstein Space. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68445-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68444-4

  • Online ISBN: 978-3-319-68445-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics