Abstract
We show that known Newton-type laws for Optimal Mass Transport, Schrödinger Bridges and the classic Madelung fluid can be derived from variational principles on Wasserstein space. The second order differential equations are accordingly obtained by annihilating the first variation of a suitable action.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
\(\mu _k\) converges weakly to \(\mu \) if \(\int _{{\mathbb R}^N}fd\mu _k\rightarrow \int _{{\mathbb R}^N}fd\mu \) for every continuous, bounded function f.
- 2.
The case of a general reversible Markovian prior is treated in [14] where all the details of the variational analysis may also be found.
References
Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich, 2nd edn. Birkhäuser Verlag, Basel (2008)
Ambrosio, L., Gigli, N.: A user’s guide to optimal transport. In: Piccoli, B., Rascle, M. (eds.) Modeling and optimisation of flows on networks. Lecture Notes in Mathematics, vol. 2062, pp. 1–155. Springer, Heidelberg (2013). doi:10.1007/978-3-642-32160-3_1
Benamou, J., Brenier, Y.: A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84, 375–393 (2000)
Beurling, A.: An automorphism of product measures. Ann. Math. 72, 189–200 (1960)
Blaquière, A.: Controllability of a Fokker-Planck equation, the Schrödinger system, and a related stochastic optimal control. Dyn. Control 2(3), 235–253 (1992)
Carlen, E.: Stochastic mechanics: a look back and a look ahead. In: Faris, W.G. (ed.) Diffusion, Quantum Theory and Radically Elementary Mathematics. Mathematical Notes, vol. 47, pp. 117–139. Princeton University Press (2006)
Chen, Y., Georgiou, T.T., Pavon, M.: Optimal steering of a linear stochastic system to a final probability distribution. Part I. IEEE Trans. Aut. Control 61(5), 1158–1169 (2016). arXiv:1408.2222v1
Chen, Y., Georgiou, T.T., Pavon, M.: Optimal steering of a linear stochastic system to a final probability distribution. Part II. IEEE Trans. Aut. Control 61(5), 1170–1180 (2016). arXiv:1410.3447v1
Chen, Y., Georgiou, T.T., Pavon, M.: Fast cooling for a system of stochastic oscillators. J. Math. Phys. 56(11), 113302 (2015). arXiv:1411.1323v2
Chen, Y., Georgiou, T.T., Pavon, M.: On the relation between optimal transport and Schrödinger bridges: a stochastic control viewpoint. J. Optim. Theory Appl. 169(2), 671–691 (2016). doi:10.1007/s10957-015-0803-z. Published Online 2015. arXiv:1412.4430v1
Chen, Y., Georgiou, T.T., Pavon, M.: Optimal transport over a linear dynamical system. IEEE Trans. Autom. Control (2017, to appear). arXiv:1502.01265v1
Chen, Y., Georgiou, T.T., Pavon, M.: Entropic and displacement interpolation: a computational approach using the Hilbert metric. SIAM J. Appl. Math. 76(6), 2375–2396 (2016). arXiv:1506.04255v1
Conforti, G.: A second order equation for Schrödinger bridges with applications to the hot gas experiment and entropic transportation cost. (2017, preprint). arXiv:1704.04821v2
Conforti, G., Pavon, M.: Extremal flows on Wasserstein space (2017, under preparation)
Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Advances in Neural Information Processing Systems, pp. 2292–2300 (2013)
Dai Pra, P.: A stochastic control approach to reciprocal diffusion processes. Appl. Math. Optim. 23(1), 313–329 (1991)
Dai Pra, P., Pavon, M.: On the Markov processes of Schroedinger, the Feynman-Kac formula and stochastic control. In: Kaashoek, M.A., van Schuppen, J.H., Ran, A.C.M. (eds.) Proceedings of MTNS Conference on Realization and Modeling in System Theory, pp. 497–504. Birkaeuser, Boston (1990)
Evans, L.C.: Partial differential equations and Monge-Kantorovich mass transfer. Curr. Dev. Math. 1977, 65–126 (1999). International Press, Boston
Fillieger, R., Hongler, M.-O., Streit, L.: Connection between an exactly solvable stochastic optimal control problem and a nonlinear reaction-diffusion equation. J. Optimiz. Theory Appl. 137, 497–505 (2008)
Föllmer, H.: Random fields and diffusion processes. In: Hennequin, P.-L. (ed.) École d’Été de Probabilités de Saint-Flour XV–XVII, 1985–1987. LNM, vol. 1362, pp. 101–203. Springer, Heidelberg (1988). doi:10.1007/BFb0086180
Fortet, R.: Résolution d’un système d’equations de M. Schrödinger. J. Math. Pure Appl. IX, 83–105 (1940)
Gangbo, W., Nguyen, T., Tudorascu, A.: Hamilton-Jacobi equations in the Wasserstein space. Methods Appl. Anal. 15(2), 155–183 (2008)
Gentil, I., Lonard, C., Ripani, L.: About the analogy between optimal transport and minimal entropy. Ann. Fac. Toulouse (2017, to appear). arXiv: 1510.08230
Guerra, F.: Structural aspects of stochastic mechanics and stochastic field theory. Phys. Rep. 77, 263–312 (1981)
Guerra, F., Morato, L.: Quantization of dynamical systems and stochastic control theory. Phys. Rev. D 27(8), 1774–1786 (1983)
Jamison, B.: The Markov processes of Schrödinger. Z. Wahrscheinlichkeitstheorie verw. Gebiete 32, 323–331 (1975)
Jiang, X., Luo, Z., Georgiou, T.: Geometric methods for spectral analysis. IEEE Trans. Signal Process. 60(3), 106471074 (2012)
Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29, 1–17 (1998)
Léonard, C.: A survey of the Schroedinger problem and some of its connections with optimal transport. Discrete Contin. Dyn. Syst. A 34(4), 1533–1574 (2014)
Léonard, C.: From the Schrödinger problem to the Monge-Kantorovich problem. J. Funct. Anal. 262, 1879–1920 (2012)
Madelung, E.: Quantentheorie in hydrodynamischer Form. Z. Phys. 40, 322–326 (1926)
McCann, R.: A convexity principle for interacting gases. Adv. Math. 128(1), 153–179 (1997)
Mikami, T.: Monge’s problem with a quadratic cost by the zero-noise limit of h-path processes. Probab. Theory Relat. Fields 129, 245–260 (2004)
Mikami, T., Thieullen, M.: Duality theorem for the stochastic optimal control problem. Stoch. Proc. Appl. 116, 1815–1835 (2006)
Mikami, T., Thieullen, M.: Optimal transportation problem by stochastic optimal control. SIAM J. Control Optim. 47(3), 1127–1139 (2008)
Nelson, E.: Dynamical Theories of Brownian Motion. Princeton University Press, Princeton (1967)
Nelson, E.: Stochastic mechanics and random fields. In: Hennequin, P.-L. (ed.) École d’Été de Probabilités de Saint-Flour XV–XVII, 1985–87. LNM, vol. 1362, pp. 427–459. Springer, Heidelberg (1988). doi:10.1007/BFb0086184
Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Commun. Part. Differ. Equ. 26(1–2), 101–174 (2001)
Ollivier, Y., Pajot, H., Villani, C.: Optimal Transportation. Theory and Applications, London Mathematical Society. Lecture Notes Series, vol. 413. Cambridge University Press (2014)
Pavon, M., Wakolbinger, A.: On free energy, stochastic control, and Schroedinger processes. In: Di Masi, G.B., Gombani, A., Kurzhanski, A. (eds.) Modeling, Estimation and Control of Systems with Uncertainty, pp. 334–348. Birkauser, Boston (1991)
Rachev, T., Rüschendorf, L.: Mass Transportation Problems, Volume I: Theory, Volume II: Applications. Probability and Its Applications. Springer, New York (1998)
Sanov, I.S.: On the probability of large deviations of random magnitudes (in Russian). Mat. Sb. N. S. 42(84) 111744 (1957). Select. Transl. Math. Stat. Probab. 1, 213–244 (1961)
Santambrogio, F.: Optimal Transport for Applied Mathematicians. Birkhäuser (2015)
Schrödinger, E.: Über die Umkehrung der Naturgesetze. Sitzungsberichte der Preuss Akad. Wissen. Berlin Phys. Math. Klasse, 144–153 (1931)
Schrödinger, E.: Sur la théorie relativiste de l’electron et l’interpretation de la mécanique quantique. Ann. Inst. H. Poincaré 2, 269 (1932)
Villani, C.: Topics in Optimal Transportation, vol. 58. AMS (2003)
Villani, C.: Optimal Transport. Old and New. Grundlehren der Mathematischen Wissenschaften, vol. 338. Springer, Heidelberg (2009)
von Renesse, M.-K.: An optimal transport view of Schrödinger’s equation. Canad. Math. Bull. 55, 858–869 (2012)
Yasue, K.: Stochastic calculus of variations. J. Funct. Anal. 41, 327–340 (1981)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Conforti, G., Pavon, M. (2017). Extremal Curves in Wasserstein Space. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-68445-1_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-68444-4
Online ISBN: 978-3-319-68445-1
eBook Packages: Computer ScienceComputer Science (R0)