Abstract
Extending previous results about matrix realization of a homogeneous cone by the author, we realize any homogeneous Hessian domain as a set of symmetric matrices with a specific block decomposition. A global potential function as well as a transitive affine group action preserving the Hessian structure is also expressed in terms of the matrix realization.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Boyom, M.N.: The cohomology of Koszul-Vinberg algebra and related topics. Afr. Diaspora J. Math. (N.S.) 9, 53–65 (2010)
Chua, C.B.: Relating homogeneous cones and positive definite cones via \(T\)-algebras. SIAM J. Optim. 14, 500–506 (2003)
Ishi, H.: Representation of clans and homogeneous cones. Vestnik Tambov Univ. 16, 1669–1675 (2011)
Ishi, H.: Homogeneous cones and their applications to statistics. In: Modern Methods of Multivariate Statistics, pp. 135–154, Travaux en Cours 82, Hermann, Paris (2014)
Ishi, H.: Matrix realization of a homogeneous cone. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2015. LNCS, vol. 9389, pp. 248–256. Springer, Cham (2015). doi:10.1007/978-3-319-25040-3_28
Koszul, J.L.: Sur la forme hermitienne canonique des espaces homogènes complexes. Canad. J. Math. 7, 562–576 (1955)
Manchon, D.: A short survey on pre-Lie algebras. In: Noncommutative Geometry and Physics: Renormalisation, Motives, Index Theory, pp. 89–102. ESI Lect. Math. Phys., Eur. Math. Soc., Zurich (2011)
Shima, H.: Homogeneous Hessian manifolds. Ann. Inst. Fourier Grenoble 30, 91–128 (1980)
Shima, H.: The Geometry of Hessian Structures. World Scientific Publishing, Hackensack (2007)
Vinberg, E.B.: The theory of convex homogeneous cones. Trans. Moscow Math. Soc. 12, 340–403 (1963)
Xu, Y.-C.: Theory of Complex Homogeneous Bounded Domains. Kluwer, Dordrecht (2005)
Yamasaki, T., Nomura, T.: Realization of homogeneous cones through oriented graphs. Kyushu J. Math. 69, 11–48 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Ishi, H. (2017). Matrix Realization of a Homogeneous Hessian Domain. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_23
Download citation
DOI: https://doi.org/10.1007/978-3-319-68445-1_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-68444-4
Online ISBN: 978-3-319-68445-1
eBook Packages: Computer ScienceComputer Science (R0)