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Guido Montúfar and Johannes Rauh

Max Planck Institute for Mathematics in the Sciences
Inselstraße 22, 04103 Leipzig, Germany

Abstract. We investigate the geometry of optimal memoryless time in-
dependent decision making in relation to the amount of information that
the acting agent has about the state of the system. We show that the
expected long term reward, discounted or per time step, is maximized
by policies that randomize among at most k actions whenever at most
k world states are consistent with the agent’s observation. Moreover, we
show that the expected reward per time step can be studied in terms of
the expected discounted reward. Our main tool is a geometric version
of the policy improvement lemma, which identifies a polyhedral cone of
policy changes in which the state value function increases for all states.

Keywords: Partially Observable Markov Decision Process, Reinforce-
ment Learning, memoryless stochastic policy, policy gradient theorem

1 Introduction

We are interested in the amount of randomization that is needed in action selec-
tion mechanisms in order to maximize the expected value of a long term reward,
depending on the uncertainty of the acting agent about the system state.

It is known that in a Markov Decision Process (MDP), the optimal policy
may always be chosen deterministic (see, e.g., [5]), in the sense that the action
a that the agent chooses is a deterministic function of the world state w the
agent observes. This is no longer true in a Partially Observable MDP (POMDP),
where the agent does not observe w directly, but only the value s of a sensor. In
general, optimal memoryless policies for POMDPs are stochastic. However, the
more information the agent has about w, the less stochastic an optimal policy
needs to be. As shown in [4], if a particular sensor value s uniquely identifies w,
then the optimal policy may be chosen such that, on observing s, the agent
always chooses the same action. We generalize this as follows: The agent may
choose an optimal policy such that, if a given sensor value s can be observed
from at most k world states, then the agent chooses an action probabilistically
among a set of at most k actions.

Such characterizations can be used to restrict the search space when searching
for an optimal policy. In [1], it was proposed to construct a low-dimensional
manifold of policies that contains an optimal policy in its closure and to restrict
the learning algorithm to this manifold. In [4], it was shown how to do this in
the POMDP setting when it is known that the optimal policy can be chosen
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deterministic in certain sensor states. This construction can be generalized and
gives manifolds of even smaller dimension when the randomization of the policy
can be further restricted.

As in [4], we study the case where at each time step the agent receives a
reward that depends on the world state w and the chosen action a. We are inter-
ested in the long term reward in either the average or the discounted sense [6].
Discounted rewards are often preferred in theoretical analysis, because of the
properties of the dynamic programming operators. In [4], the analysis of average
rewards was much more involved than the analysis of discounted rewards. While
the case of discounted rewards follows from a policy improvement argument, an
elaborate geometric analysis was needed for the case of average rewards.

Various works have compared average and discounted rewards [8,3,2]. Here,
we develop a tool that allows us to transfer properties of optimal policies from
the discounted case to the average case. Namely, the average case can be seen as
the limit of the discounted case when the discount factor γ approaches 1. If the
Markov chain is irreducible and aperiodic, this limit is uniform, and the optimal
policies of the discounted case converge to optimal policies of the average case.

2 Optimal Policies for POMDPs

A (discrete time) partially observable Markov decision process (POMDP) is
defined by a tuple pW,S,A, α, β,Rq, where W , S, A are finite sets of world
states, sensor states, and actions, β : W Ñ ∆S and α : W ˆ A Ñ ∆W are
Markov kernels describing sensor measurements and world state transitions, and
R : W ˆ A Ñ R is a reward signal. We consider stationary (memoryless and
time independent) action selection mechanisms, described by Markov kernels of
the form π : S Ñ ∆A. We denote the set of stationary policies by ∆S,A. We
write pπpa|wq “

ř

s βps|wqπpa|sq for the effective world state policy. Standard
reference texts are [6,5].

We assume that the Markov chain starts with a distribution µ P ∆W and
then progresses according to α, β and a fixed policy π. We denote by µtπ P ∆W

the distribution of the world state at time t. It is well known that the limit
pπµ :“ limTÑ8

1
T

řT´1
t“0 µ

t
π exists and is a stationary distribution of the Markov

chain. The following technical assumption is commonly made:

p˚q For all π, the Markov chain over world states is aperiodic and irreducible.

The most important implication of irreducibility is that the limit distribution pπµ
is independent of µ. If the chain has period s, then pπµ “ limTÑ8

1
s

řs
t“1 µ

T`t
π .

In particular, under assumption p˚q, µtπ Ñ pπµ for any µ. (Since we assume finite
sets, all notions of convergence of probability distributions are equivalent.)

The objective of learning is to maximize the expected value of a long term
reward. The (normalized) discounted reward with discount factor γ P r0, 1q is

Rγ
µpπq “ p1´γq

8
ÿ

t“0

γt
ÿ

w

µtπpwq
ÿ

a

pπpa|wqRpa,wq “ p1´γqEπ,µ
”

8
ÿ

t“0

γtRpat, wtq
ı

.



The average reward is

Rµpπq “
ÿ

w

pπµpwq
ÿ

a

pπpa|wqRpa,wq.

Under assumption p˚q, Rµ is independent of the choice of µ and depends contin-
uously on π, as we show next. Since ∆S,A is compact, the existence of optimal
policies is guaranteed. Without the assumption, optimal policies need not exist.
On the other hand, the expected discounted reward Rµ

γ is always continuous, so
that, for this, optimal policies always exist.

Lemma 1. Under assumption p˚q, Rµpπq is continuous as a function of π.

Proof. By p˚q, pπµ is the unique solution to a linear system of equations that
smoothly depends on π. Thus, Rµ is continuous as a function of π. ˝

Lemma 2. For fixed µ and γ P r0, 1q, Rµ
γpπq is continuous as a function of π.

Proof. Fix ε ą 0. There exists l ą 0 such that p1 ´ γq
ř8

t“l γ
tR ď ε{4, where

R “ maxa,w |Rpa,wq|. For each t, the distribution µtπ depends continuously on π.
For fixed π, let U be a neighborhood of π such that |µtπpwq ´ µ

t
π1pwq| ď 1

2|W |R ε

for t “ 0, . . . , l ´ 1 and π1 P U . Then, for all π1 P U ,

|Rµ
γpπq´Rµ

γpπ
1q| ď

ε

2
`p1´γq

l´1
ÿ

t“0

γt
ÿ

w

|µtπpwq´µ
t
π1pwq|R ď

ε

2
`

|W |

2|W |R
εR “ ε.

˝

The following refinement of the analysis of [4] is our main result.

Theorem 1. Consider a POMDP pW,S,A, α, β,Rq, and let µ P ∆W and γ P
r0, 1q. There is a stationary (memoryless, time independent) policy π˚ P ∆S,A

with | supppπ˚p¨|sqq| ď | supppβps|¨qq| for all s P S and Rγ
µpπ

˚q ě Rγ
µpπq for all

π P ∆S,A. Under assumption p˚q, the same holds true for Rµ in place of Rγ
µ.

We prove the discounted case in Section 3 and the average case in Section 4.

3 Discounted Rewards from Policy Improvement

The state value function V π of a policy π is defined as the unique solution of
the Bellman equation

V πpwq “
ÿ

a

pπpa|wq
”

Rpw, aq ` γ
ÿ

w1

αpw1|w, aqV πpw1q
ı

, w PW.

It is useful to write V πpwq “
ř

a p
πpa|wqQπpw, aq, where

Qπpw, aq “ Rpw, aq ` γ
ř

w1 αpw1|w, aqV πpw1q, w PW,a P A,

is the state action value function. Observe that Rγ
µpπq “ p1´γq

ř

w µpwqV
πpwq.

If two policies π, π1 satisfy V π
1

pwq ě V πpwq for all w, then Rγ
µpπ

1q ě Rγ
µpπq for

all µ. The following is a more explicit version of a lemma from [4]:



Lemma 3 (Policy improvement lemma). Let π, π1 P ∆S,A and εpwq “
ř

a p
π1

pa|wqQπpw, aq ´ V πpwq for all w PW . Then

V π
1

pwq “ V πpwq ` Eπ1,w0“w

”

8
ÿ

t“0

γtεpwtq
ı

for all w PW.

If εpwq ě 0 for all w PW , then

V π
1

pwq ě V πpwq ` dπ
1

pwqεpwq for all w PW,

where dπ
1

pwq “
ř8

t“0 γ
t Prpwt “ w|π1, w0 “ wq ě 1 is the discounted expected

number of visits to w.

Proof. V πpwq “
ÿ

a

pπ
1

pa|wqQπpw, aq ´ εpwq

“ Eπ1,w0“w

”´

Rpw0, a0q ´ εpw0q

¯

` γV πpw1q

ı

“ Eπ1,w0“w

”´

Rpw0, a0q ´ εpw0q

¯

` γ
´

ÿ

a

pπ
1

pa|w1qQ
πpw1, aq ´ εpw1q

¯ı

“ Eπ1,w0“w

”

8
ÿ

t“0

γt
´

Rpwt, atq ´ εpwtq
¯ı

“ V π
1

pwq ´ Eπ1,w0“w

”

8
ÿ

t“0

γtεpwtq
ı

. ˝

Lemma 3 allows us to find policy changes that increase V πpwq for all w PW
and thereby Rγ

µpπq for any µ.

Definition 1. Fix a policy π P ∆S,A. For each sensor state s P S consider the
set supppβps|¨qq “ tw P W : βps|wq ą 0u “ tws1, . . . , w

s
ks
u, and define the linear

forms

lπ,si : ∆A Ñ R; q ÞÑ
ÿ

a

qpaqQπpwsi , aq, i “ 1, . . . , ks.

The policy improvement cone at policy π and sensation s is

Lπ,s “
 

q P ∆A : lπ,si pqq ě lπ,si pπp¨|sqq for all i “ 1, . . . , ks
(

.

The (total) policy improvement cone at policy π is

Lπ “
 

π1 P ∆S,A : π1p¨|sq P Lπ,s for all s P S
(

.

Lπ,s and Lπ are intersections of ∆A and ∆S,A with intersections of affine halfs-
paces (see Fig. 1). Since π P Lπ, the policy improvement cones are never empty.

Lemma 4. Let π P ∆S,A and π1 P Lπ. Then, for all w,

V π
1

pwq ´ V πpwq ě dπ
1

pwq
ÿ

s

βps|wq
ÿ

a

pπ1pa|sq ´ πpa|sqqQπpw, aq ě 0.



Proof. Fix w PW . In the notation from Lemma 3, suppose that supppβp¨|wqq “
ts1, . . . , slu and that w “ w

sj
ij

for j “ 1 . . . , l. Then

εpwq “
ÿ

a

pπ
1

pa|wqQπpw, aq ´
ÿ

a

pπpa|wqQπpw, aq

“

l
ÿ

j“1

βpsj |wql
π,sj
ij
pπ1p¨|sjq ´ πp¨|sjqq ě 0,

since π1 P Lπ. The statement now follows from Lemma 3.

Remark 1. Lemma 4 relates to the policy gradient theorem [7], which says that

BV πpwq

Bπpa1|s1q
“ dπpwq

ÿ

s

βps|wq
ÿ

a

Bπpa|sq

Bπpa1|s1q
Qπpw, aq. (1)

Our result adds that, for each w, the value function V π
1

pwq is bounded from
below by a linear function of π1 that takes value at least V πpwq within the entire
policy improvement cone Lπ. See Fig. 1.

Now we show that there is an optimal policy with small support.

Lemma 5. Let P be a polytope, and let l1, . . . , lk be linear forms on P . For any
p P P , let Li,` “ tq P P : lipqq ě lippqu. Then

Şk
i“1 Li,` contains an element q

that belongs to a face of P of dimension at most k ´ 1.

Proof. The argument is by induction. For k “ 1, the maximum of l1 on P is
attained at a vertex q of P . Clearly, l1pqq ě l1ppq, and so q P L1,`.

Now suppose that k ą 1. Let P 1 :“ P XLk,`. Each face of P 1 is a subset of a

face of P of at most one more dimension. By induction,
Şk´1
i“1 Li,`XP

1 contains
an element q that belongs to a face of P 1 of dimension at most k ´ 2.

Proof (of Theorem 1 for discounted rewards). By Lemma 5, each policy improve-
ment cone Lπ,s contains an element q that belongs to a face of ∆A of dimension
at most pk ´ 1q (that is, the support of q has cardinality at most k), where
k “ | supppβps|¨qq|. Putting these together, we find a policy π1 in the total pol-
icy improvement cone that satisfies | supppπp¨|sqq| ď | supppβps|¨qq| for all s. By
Lemma 4, V π

1

pwq ě V πpwq for all w, and so Rγ
µpπ

1q ě Rγ
µpπq. ˝

Remark 2. The | suppβps|¨q| positive probability actions at sensation s do not
necessarily correspond to the actions that the agent would choose if she knew
the identity of the world state, as shown in our example from Section 5.

4 Average Rewards from Discounted Rewards

The average reward per time step can be written in terms of the discounted
reward as Rpπq “ Rγ

pπµ
. However, the hypothesis V π

1

pwq ě V πpwq for all w, does

not directly imply any relation between Rpπ1q and Rpπq, since they compare the
value function against different stationary distributions. We show that results
for discounted rewards translate nonetheless to results for average rewards.



q

p

L2

L1

L1,+ ∩ L2

L
π(·|s)•

V π(w)•

Lπ,s

Fig. 1. Left: Illustration of the policy improvement cone. Right: Illustration of the
state value function V π

pwq for some fixed w, showing the linear lower bound over the
policy improvement cone Lπ,s. This numerical example is discussed further in Section 5.

Lemma 6. Let µ be fixed, and assume p˚q. For any ε ą 0 there exists l ą 0 such
that for all π and all t ě l, |µtπpwq ´ p

π
µpwq| ď ε for all w.

Proof. By p˚q, the transition matrix of the Markov chain has the eigenvalue one
with multiplicity one, with left eigenvector is pπµ. Let p2, . . . , p|W | be orthonormal
left eigenvectors to the other eigenvalues λ2, . . . , λ|W |, ordered such that λ2 has
the largest absolute value. There is a unique expansion µ “ c1p

π
µ ` c2p2 ` ¨ ¨ ¨ `

c|W |p|W |. Then µtπ “ c1p
π
µ`

ř|W |
i“2 ciλ

t
ipi. Letting tÑ8, it follows that c1 “ 1. By

orthonormality, |ci|
2 ď

ř|W |
i“2 c

2
i ď }µ}

2
2 ď 1 and |pipwq| ď 1 for i “ 2, . . . , |W |.

Therefore, |µtπpwq ´ p
π
µpwq| “ |

ř|W |
i“2 ciλ

t
ip|W |pwq| ď |W ||λ2|

t.
Since |λ2| depends continuously on the transition matrix, which depends

continuously on π, |λ2| depends continuously on π. Since ∆S,A is compact, |λ2|
has a maximum d, and d ă 1 due to p˚q. Therefore, |µtπpwq´ p

π
µpwq| ď |W |d

t for
all π. The statement follows from this. ˝

Proposition 1. For fixed µ, under assumption p˚q, Rγ
µpπq Ñ Rµpπq uniformly

in π as γ Ñ 1. Thus, Rγ
µ Ñ Rµ uniformly in π as γ Ñ 1.

Proof. For fixed µ and ε, let l be as in Lemma 6. Let R “ maxa,w |Rpa,wq|. Then

Rγ
µpπq “ p1´ γq

l´1
ÿ

k“0

γk
ÿ

w

µkπpwq
ÿ

a

πpa|wqRpa,wq

` p1´ γqγl
8
ÿ

k“0

γk
ÿ

w

pπµpwq
ÿ

a

πpa|wqRpa,wq `OpεRqp1´ γq
8
ÿ

k“0

γk

“ Opp1´ γqlRq `OpεRq ` γlRµpπq

for all π. For given δ ą 0, we can choose ε ą 0 such that the term OpεRq is smaller
in absolute value than δ{3. This also fixes l “ lpεq. Then, for any γ ă 1 large



enough, the term Opp1´γqlRq is smaller than δ{3, and also |pγl´1qRµpπq| ď δ{3.
This shows that for γ ă 1 large enough, |Rγ

µpπq´Rµpπq| ď δ, independent of π.
The statement follows since δ ą 0 was arbitrary. ˝

Theorem 2. For any γ P r0, 1q, let π̂γ be a policy that maximizes Rµ
γ . Let π̂ be

a limit point of a convergent subsequence as γ Ñ 1. Then π̂ maximizes Rµ, and
limγÑ1 Rγ

µpπ̂γq “ Rµpπ̂q.

Proof. For any ε ą 0, there is δ ą 0 such that γ ě 1´δ implies |Rµpπq´Rγ
µpπq| ď

ε for all π. Thus |maxπRµpπq ´ maxπRγ
µ| ď ε, whence limγÑ1 maxπRγ

µpπq “
maxπRµpπq. Moreover, |maxπRµpπq´Rµpπ̂γq| ď 2ε`|maxπRγ

µpπq´Rγ
µpπ̂γq| “

2ε. By continuity, the limit value of Rµ applied to a convergent subsequence of
the π̂γ is the maximum of Rµ. ˝

Corollary 1. Fix a world state w, and let r ě 0. If there exists for each γ P r0, 1q
a policy π̂γ that is optimal for Rγ

µ with | supppπp¨|sqq| ď r, then there exists a
policy π̂ with | supppπp¨|sqq| ď r that is optimal for Rµ.

Proof. Take a limit point of the family π̂γ as γ Ñ 1 and apply Theorem 2. ˝

Remark 3. Without p˚q, one can show that Rγ
µpπq still converges to Rµpπq for

each fixed π, but convergence is no longer uniform. Also, Rµ need not be con-
tinuous in π, and so an optimal policy need not exist.

5 Example

We illustrate our results on an example from [4]. Consider an agent with sensor
states S “ t1, 2, 3u and actions A “ t1, 2, 3u. The system has world states W “

t1, 2, 3, 4u with the transitions and rewards illustrated in Fig. 2. At w “ 1, 4 all
actions produce the same outcomes. States w “ 2, 3 are observed as s “ 2. Hence
we can focus on πp¨|s “ 2q P ∆A. We evaluate 861 evenly spaced policies in this
2-simplex. Fig. 2 shows color maps of the expected reward (interpolated between
evaluations), with lighter colors corresponding to higher values. As in Fig. 1, red
vectors are the gradients of the linear forms (corresponding toQπpw, ¨q, w “ 2, 3),
and dashed blue lines limit the policy improvement cones Lπ,s“2. Stepping into
the improvement cone always increases V πpwq “ Rγ

µ“δw
pπq for all w PW . Note

that each cone contains a policy at an edge of the simplex, i.e., assigning positive
probability to at most two actions. The convergence of Rγ

µ to Rµ as γ Ñ 1 is
visible. Note also that for γ “ 0.6 the optimal policy requires two positive
probability actions, so that our upper bound | supppπp¨|sqq| ď | supppβps|¨qq| is
attained.
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Fig. 2. Illustration of the example form Section 5. Top: State transitions and reward
signal. Bottom: Numerical evaluation of the expected long term reward.
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