Skip to main content

Drone Tracking Using an Innovative UKF

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10589))

Included in the following conference series:

  • 2547 Accesses

Abstract

This paper addresses the drone tracking problem, using a model based on the Frenet-Serret frame. A kinematic model in 2D, representing intrinsic coordinates of the drone is used. The tracking problem is tackled using two recent filtering methods. On the one hand, the Invariant Extended Kalman Filter (IEKF), introduced in [1] is tested, and on the other hand, the second step of the filtering algorithm, i.e. the update step of the IEKF is replaced by the update step of the Unscented Kalman Filter (UKF), introduced in [2]. These two filters are compared to the well known Extended Kalman Filter. The estimation precision of all three algorithms are computed on a real drone tracking problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barrau, A., Bonnabel, S.: The invariant extended Kalman filter as a stable observer. IEEE Trans. Autom. Control 62, 1797–1812 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  2. Julier, S.J., Uhlmann, J.K.: Unscented filtering and nonlinear estimation. Proc. IEEE 92(3), 401–422 (2004)

    Article  Google Scholar 

  3. Bunch, P., Godsill, S.: Dynamical models for tracking with the variable rate particle filter. In: 2012 15th International Conference on Information Fusion (FUSION), pp. 1769–1775. IEEE (2012)

    Google Scholar 

  4. Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35–45 (1960)

    Article  Google Scholar 

  5. Bar-Shalom, Y., Li, X., Kirubarajan, T.: Estimation with Applications to Tracking and Navigation: Theory Algorithms and Software. Wiley, New York (2004). https://books.google.fr/books?id=xz9nQ4wdXG4C

    Google Scholar 

  6. Brossard, M., Bonnabel, S., Condomines, J.-P.: Unscented Kalman filtering on lie groups. soumis à IROS (2017). https://hal.archives-ouvertes.fr/hal-01489204

  7. Gustafsson, F., Gunnarsson, F., Bergman, N., Forssell, U., Jansson, J., Karlsson, R., Nordlund, P.-J.: Particle filters for positioning, navigation, and tracking. IEEE Trans. Signal Process. 50(2), 425–437 (2002)

    Article  Google Scholar 

  8. Doucet, A., De Freitas, N., Murphy, K., Russell, S.: Rao-blackwellised particle filtering for dynamic bayesian networks. In: Proceedings of the Sixteenth conference on Uncertainty in Artificial Intelligence, pp. 176–183. Morgan Kaufmann Publishers Inc. (2000)

    Google Scholar 

  9. Pilté, M., Bonnabel, S., Barbaresco, F.: An innovative nonlinear filter for radar kinematic estimation of maneuvering targets in 2D. In: 18th International Radar Symposium (IRS) (2017)

    Google Scholar 

  10. Barrau, A., Bonnabel, S.: Intrinsic filtering on lie groups with applications to attitude estimation. IEEE Trans. Autom. Control 60(2), 436–449 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  11. Eade, E.: Lie groups for 2d and 3d transformations. http://ethaneade.com/lie.pdf. Accessed Dec 2013

  12. Julier, S.J., Uhlmann, J.K.: New extension of the kalman filter to nonlinear systems. In: AeroSense 1997, pp. 182–193. International Society for Optics and Photonics (1997)

    Google Scholar 

  13. Pilté, M., Bonnabel, S., Barbaresco, F.: Tracking the Frenet-Serret frame associated to a highly maneuvering target in 3D. working paper or preprint. https://hal-mines-paristech.archives-ouvertes.fr/hal-01568908

  14. Abbeel, P., Coates, A., Montemerlo, M., Ng, A.Y., Thrun, S.: Discriminative training of Kalman filters. In: Robotics: Science and systems, vol. 2, p. 1 (2005)

    Google Scholar 

  15. Castella, F.R.: An adaptive two-dimensional Kalman tracking filter. IEEE Trans. Aerosp. Electron. Syst. AES–16(6), 822–829 (1980)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marion Pilté .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Pilté, M., Bonnabel, S., Barbaresco, F. (2017). Drone Tracking Using an Innovative UKF. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68445-1_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68444-4

  • Online ISBN: 978-3-319-68445-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics