Abstract
This paper addresses the drone tracking problem, using a model based on the Frenet-Serret frame. A kinematic model in 2D, representing intrinsic coordinates of the drone is used. The tracking problem is tackled using two recent filtering methods. On the one hand, the Invariant Extended Kalman Filter (IEKF), introduced in [1] is tested, and on the other hand, the second step of the filtering algorithm, i.e. the update step of the IEKF is replaced by the update step of the Unscented Kalman Filter (UKF), introduced in [2]. These two filters are compared to the well known Extended Kalman Filter. The estimation precision of all three algorithms are computed on a real drone tracking problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barrau, A., Bonnabel, S.: The invariant extended Kalman filter as a stable observer. IEEE Trans. Autom. Control 62, 1797–1812 (2017)
Julier, S.J., Uhlmann, J.K.: Unscented filtering and nonlinear estimation. Proc. IEEE 92(3), 401–422 (2004)
Bunch, P., Godsill, S.: Dynamical models for tracking with the variable rate particle filter. In: 2012 15th International Conference on Information Fusion (FUSION), pp. 1769–1775. IEEE (2012)
Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35–45 (1960)
Bar-Shalom, Y., Li, X., Kirubarajan, T.: Estimation with Applications to Tracking and Navigation: Theory Algorithms and Software. Wiley, New York (2004). https://books.google.fr/books?id=xz9nQ4wdXG4C
Brossard, M., Bonnabel, S., Condomines, J.-P.: Unscented Kalman filtering on lie groups. soumis à IROS (2017). https://hal.archives-ouvertes.fr/hal-01489204
Gustafsson, F., Gunnarsson, F., Bergman, N., Forssell, U., Jansson, J., Karlsson, R., Nordlund, P.-J.: Particle filters for positioning, navigation, and tracking. IEEE Trans. Signal Process. 50(2), 425–437 (2002)
Doucet, A., De Freitas, N., Murphy, K., Russell, S.: Rao-blackwellised particle filtering for dynamic bayesian networks. In: Proceedings of the Sixteenth conference on Uncertainty in Artificial Intelligence, pp. 176–183. Morgan Kaufmann Publishers Inc. (2000)
Pilté, M., Bonnabel, S., Barbaresco, F.: An innovative nonlinear filter for radar kinematic estimation of maneuvering targets in 2D. In: 18th International Radar Symposium (IRS) (2017)
Barrau, A., Bonnabel, S.: Intrinsic filtering on lie groups with applications to attitude estimation. IEEE Trans. Autom. Control 60(2), 436–449 (2015)
Eade, E.: Lie groups for 2d and 3d transformations. http://ethaneade.com/lie.pdf. Accessed Dec 2013
Julier, S.J., Uhlmann, J.K.: New extension of the kalman filter to nonlinear systems. In: AeroSense 1997, pp. 182–193. International Society for Optics and Photonics (1997)
Pilté, M., Bonnabel, S., Barbaresco, F.: Tracking the Frenet-Serret frame associated to a highly maneuvering target in 3D. working paper or preprint. https://hal-mines-paristech.archives-ouvertes.fr/hal-01568908
Abbeel, P., Coates, A., Montemerlo, M., Ng, A.Y., Thrun, S.: Discriminative training of Kalman filters. In: Robotics: Science and systems, vol. 2, p. 1 (2005)
Castella, F.R.: An adaptive two-dimensional Kalman tracking filter. IEEE Trans. Aerosp. Electron. Syst. AES–16(6), 822–829 (1980)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Pilté, M., Bonnabel, S., Barbaresco, F. (2017). Drone Tracking Using an Innovative UKF. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_35
Download citation
DOI: https://doi.org/10.1007/978-3-319-68445-1_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-68444-4
Online ISBN: 978-3-319-68445-1
eBook Packages: Computer ScienceComputer Science (R0)