Skip to main content

Sigma Point Kalman Filtering on Matrix Lie Groups Applied to the SLAM Problem

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10589))

Included in the following conference series:

  • 2603 Accesses

Abstract

This paper considers sigma point Kalman filtering on matrix Lie groups. Sigma points that are elements of a matrix Lie group are generated using the matrix exponential. Computing the mean and covariance using the sigma points via weighted averaging and effective use of the matrix natural logarithm, respectively, is discussed. The specific details of estimating landmark locations, and the position and attitude of a vehicle relative to the estimated landmark locations, is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  2. Särkkä, S.: Bayesian Filtering and Smoothing. Cambridge University Press, Cambridge (2013)

    Book  MATH  Google Scholar 

  3. Julier, S.J., Uhlmann, J.K., Durrant-Whyte, H.F.: A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Trans. Autom. Control 45(3), 477–482 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Crassidis, J.L., Markley, F.L.: Unscented filtering for spacecraft attitude estimation. J. Guidance Control Dyn. 26(4), 536–542 (2003). AIAA

    Article  Google Scholar 

  5. Hauberg, S., Lauze, F., Pedersen, K.S.: Unscented Kalman filtering on Riemannian manifolds. J. Math. Imaging Vis. 46(1), 103–120 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hertzberg, C., Wagner, R., Frese, U., Schröder, L.: Integrating generic sensor fusion algorithms with sound state representations through encapsulation of manifolds. Inf. Fusion 14(1), 57–77 (2013)

    Article  Google Scholar 

  7. Barfoot, T.D., Furgale, P.T.: Associating uncertainty with three-dimensional poses for use in estimation problems. IEEE Trans. Robot. 30(3), 679–693 (2014)

    Article  Google Scholar 

  8. Brossard, M., Bonnabel, S., Condomines, J.-P.: Unscented Kalman Filtering on Lie Groups. Soumis Ă  IROS 2017 (2017). \(<\)hal-01489204v2\(>\). https://hal.archives-ouvertes.fr/hal-01489204v2

  9. Haug, A.J.: Bayesian Estimation and Tracking - A Practical Guide. Wiley, Hoboken (2012)

    Book  MATH  Google Scholar 

  10. Wu, Y., Hu, D., Wu, M., Hu, X.: A numerical-integration perspective on gaussian filters. IEEE Trans. Signal Process. 54, 2910–2921 (2006)

    Article  MATH  Google Scholar 

  11. Bloch, A., Baillieul, J., Crouch, P., Marsden, J.E., Krishnaprasad, P.S., Murray, R., Zenkov, D.: Nonholonomic Mechanics and Control, vol. 24. Springer, New York (2003)

    Google Scholar 

  12. Eade, E.: Lie Groups for Computer Vision. http://ethaneade.com/lie_groups.pdf. Accessed 13 Apr 2017

  13. Chirikjian, G.S.: Stochastic Models, Information Theory, and Lie Groups, vol. 2. Birkhauser, Springer Science + Business Media Inc., Boston (2011)

    Google Scholar 

  14. Barfoot, T.D.: State Estimation for Robotics. Cambridge University Press, Cambridge (2017). In preparation (draft compiled February 14, 2017)

    Book  Google Scholar 

  15. Moakher, M.: Means and averaging in the group of rotations. SIAM J. Matrix Anal. Appl. 24(1), 1–16 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hartley, R., Trumpf, J., Dai, Y., Li, H.: Rotation averaging. Int. J. Comput. Vis. 103(3), 267–305 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  17. Manton, J.H.: A globally convergent numerical algorithm for computing the centre of mass on compact lie groups. In: 8th Control, Automation, Robotics and Vision Conference, vol. 3, pp. 2211–2216, December 2004

    Google Scholar 

  18. Fiori, S., Tanaka, T.: An algorithm to compute averages on matrix lie groups. IEEE Trans. Signal Process. 57, 4734–4743 (2009)

    Article  MathSciNet  Google Scholar 

  19. Murray, R.N., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press Inc., Boca Raton (1993)

    MATH  Google Scholar 

  20. Hughes, P.C.: Spacecraft Attitude Dynamics, 2nd edn. Dover, Mineola (2004)

    Google Scholar 

  21. Markley, F.L.: Attitude determination using vector observations and the singular value decomposition. J. Astronaut. Sci. 36(3), 245–258 (1988)

    Google Scholar 

  22. de Ruiter, A., Forbes, J.R.: On the solution of Wahba’s problem on \(SO(n)\). J. Astronaut. Sci. 60(1), 1–31 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Richard Forbes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Forbes, J.R., Zlotnik, D.E. (2017). Sigma Point Kalman Filtering on Matrix Lie Groups Applied to the SLAM Problem. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68445-1_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68444-4

  • Online ISBN: 978-3-319-68445-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics