Abstract
This paper considers sigma point Kalman filtering on matrix Lie groups. Sigma points that are elements of a matrix Lie group are generated using the matrix exponential. Computing the mean and covariance using the sigma points via weighted averaging and effective use of the matrix natural logarithm, respectively, is discussed. The specific details of estimating landmark locations, and the position and attitude of a vehicle relative to the estimated landmark locations, is considered.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2006)
Särkkä, S.: Bayesian Filtering and Smoothing. Cambridge University Press, Cambridge (2013)
Julier, S.J., Uhlmann, J.K., Durrant-Whyte, H.F.: A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Trans. Autom. Control 45(3), 477–482 (2000)
Crassidis, J.L., Markley, F.L.: Unscented filtering for spacecraft attitude estimation. J. Guidance Control Dyn. 26(4), 536–542 (2003). AIAA
Hauberg, S., Lauze, F., Pedersen, K.S.: Unscented Kalman filtering on Riemannian manifolds. J. Math. Imaging Vis. 46(1), 103–120 (2013)
Hertzberg, C., Wagner, R., Frese, U., Schröder, L.: Integrating generic sensor fusion algorithms with sound state representations through encapsulation of manifolds. Inf. Fusion 14(1), 57–77 (2013)
Barfoot, T.D., Furgale, P.T.: Associating uncertainty with three-dimensional poses for use in estimation problems. IEEE Trans. Robot. 30(3), 679–693 (2014)
Brossard, M., Bonnabel, S., Condomines, J.-P.: Unscented Kalman Filtering on Lie Groups. Soumis Ă IROS 2017 (2017). \(<\)hal-01489204v2\(>\). https://hal.archives-ouvertes.fr/hal-01489204v2
Haug, A.J.: Bayesian Estimation and Tracking - A Practical Guide. Wiley, Hoboken (2012)
Wu, Y., Hu, D., Wu, M., Hu, X.: A numerical-integration perspective on gaussian filters. IEEE Trans. Signal Process. 54, 2910–2921 (2006)
Bloch, A., Baillieul, J., Crouch, P., Marsden, J.E., Krishnaprasad, P.S., Murray, R., Zenkov, D.: Nonholonomic Mechanics and Control, vol. 24. Springer, New York (2003)
Eade, E.: Lie Groups for Computer Vision. http://ethaneade.com/lie_groups.pdf. Accessed 13 Apr 2017
Chirikjian, G.S.: Stochastic Models, Information Theory, and Lie Groups, vol. 2. Birkhauser, Springer Science + Business Media Inc., Boston (2011)
Barfoot, T.D.: State Estimation for Robotics. Cambridge University Press, Cambridge (2017). In preparation (draft compiled February 14, 2017)
Moakher, M.: Means and averaging in the group of rotations. SIAM J. Matrix Anal. Appl. 24(1), 1–16 (2002)
Hartley, R., Trumpf, J., Dai, Y., Li, H.: Rotation averaging. Int. J. Comput. Vis. 103(3), 267–305 (2013)
Manton, J.H.: A globally convergent numerical algorithm for computing the centre of mass on compact lie groups. In: 8th Control, Automation, Robotics and Vision Conference, vol. 3, pp. 2211–2216, December 2004
Fiori, S., Tanaka, T.: An algorithm to compute averages on matrix lie groups. IEEE Trans. Signal Process. 57, 4734–4743 (2009)
Murray, R.N., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press Inc., Boca Raton (1993)
Hughes, P.C.: Spacecraft Attitude Dynamics, 2nd edn. Dover, Mineola (2004)
Markley, F.L.: Attitude determination using vector observations and the singular value decomposition. J. Astronaut. Sci. 36(3), 245–258 (1988)
de Ruiter, A., Forbes, J.R.: On the solution of Wahba’s problem on \(SO(n)\). J. Astronaut. Sci. 60(1), 1–31 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Forbes, J.R., Zlotnik, D.E. (2017). Sigma Point Kalman Filtering on Matrix Lie Groups Applied to the SLAM Problem. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_37
Download citation
DOI: https://doi.org/10.1007/978-3-319-68445-1_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-68444-4
Online ISBN: 978-3-319-68445-1
eBook Packages: Computer ScienceComputer Science (R0)