Skip to main content

Geometric Degree of Non Conservativeness

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10589))

Included in the following conference series:

  • 2397 Accesses

Abstract

Symplectic structure is powerful especially when it is applied to Hamiltonian systems. We show here how this symplectic structure may define and evaluate an integer index that measures the defect for the system to be Hamiltonian. This defect is called the Geometric Degree of Non Conservativeness of the system. Darboux theorem on differential forms is the key result. Linear and non linear frameworks are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bolotin, V.V.: Nonconservative Problems of the Theory of Elastic Stability. Pergamon Press, London (1963)

    MATH  Google Scholar 

  2. Godbillon, C.: Géométrie différentielle et mécanique analytique. Herman, Paris (1969)

    MATH  Google Scholar 

  3. Lerbet, J., Challamel, N., Nicot, F., Darve, F.: Variational formulation of divergence stability for constrained systems. Appl. Math. Model. doi:10.1016/j.apm.2015.02.052

  4. Lerbet, J., Challamel, N., Nicot, F., Darve, F.: Kinematical structural stability. Discr. Contin. Dyn. Syst. Ser. S (DCDS-S) 9(2), 529–536 (2016). American Institute of Mathematical Sciences (AIMS)

    Article  MATH  MathSciNet  Google Scholar 

  5. Lerbet, J., Challamel, N., Nicot, F., Darve, F.: Geometric degree of nonconservativity: set of solutions for the linear case and extension to the differentiable non linear case. Appl. Math. Modell. (2016). doi:10.1016/j.apm.2016.01.030

  6. Souriau, J.M.: Construction explicite de l’indice de Maslov. Applications. In: Janner, A., Janssen, T., Boon, M. (eds.) Group Theoretical Methods in Physics. Lecture Notes in Physics, vol. 50. Springer, Heidelberg (1976). doi:10.1007/3-540-07789-8_13

    Chapter  Google Scholar 

  7. Thompson, J.M.T.: Paradoxical mechanics under fluid flow. Nature 296(5853), 135–137 (1982)

    Article  Google Scholar 

  8. Truesdell, C.: Hypoelasticity. J. Rationa. Mech. Anal. 4(83–133), 1019–1020 (1955)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Lerbet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lerbet, J., Challamel, N., Nicot, F., Darve, F. (2017). Geometric Degree of Non Conservativeness. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68445-1_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68444-4

  • Online ISBN: 978-3-319-68445-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics