Abstract
Symplectic structure is powerful especially when it is applied to Hamiltonian systems. We show here how this symplectic structure may define and evaluate an integer index that measures the defect for the system to be Hamiltonian. This defect is called the Geometric Degree of Non Conservativeness of the system. Darboux theorem on differential forms is the key result. Linear and non linear frameworks are investigated.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bolotin, V.V.: Nonconservative Problems of the Theory of Elastic Stability. Pergamon Press, London (1963)
Godbillon, C.: Géométrie différentielle et mécanique analytique. Herman, Paris (1969)
Lerbet, J., Challamel, N., Nicot, F., Darve, F.: Variational formulation of divergence stability for constrained systems. Appl. Math. Model. doi:10.1016/j.apm.2015.02.052
Lerbet, J., Challamel, N., Nicot, F., Darve, F.: Kinematical structural stability. Discr. Contin. Dyn. Syst. Ser. S (DCDS-S) 9(2), 529–536 (2016). American Institute of Mathematical Sciences (AIMS)
Lerbet, J., Challamel, N., Nicot, F., Darve, F.: Geometric degree of nonconservativity: set of solutions for the linear case and extension to the differentiable non linear case. Appl. Math. Modell. (2016). doi:10.1016/j.apm.2016.01.030
Souriau, J.M.: Construction explicite de l’indice de Maslov. Applications. In: Janner, A., Janssen, T., Boon, M. (eds.) Group Theoretical Methods in Physics. Lecture Notes in Physics, vol. 50. Springer, Heidelberg (1976). doi:10.1007/3-540-07789-8_13
Thompson, J.M.T.: Paradoxical mechanics under fluid flow. Nature 296(5853), 135–137 (1982)
Truesdell, C.: Hypoelasticity. J. Rationa. Mech. Anal. 4(83–133), 1019–1020 (1955)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Lerbet, J., Challamel, N., Nicot, F., Darve, F. (2017). Geometric Degree of Non Conservativeness. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_41
Download citation
DOI: https://doi.org/10.1007/978-3-319-68445-1_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-68444-4
Online ISBN: 978-3-319-68445-1
eBook Packages: Computer ScienceComputer Science (R0)